主动脉狭窄(AS)是导致大量发病率和死亡率的退化瓣膜状况。这种情况未经诊断和处理不足。在临床实践中被诊断为经胸膜超声心动图专家审查,该术会产生数十个心脏的超声图像。只有其中一些观点显示主动脉瓣。为了自动筛选AS,深网必须学会模仿人类专家识别主动脉瓣观点,然后在这些相关图像上汇总的观点,以产生研究级别的诊断。我们发现,由于依赖图像跨图像的不灵平均值,因此AS检测的方法不足。我们进一步发现,基于现成的基于注意力的多个实例学习(MIL)的表现不佳。我们通过两项关键的方法论创新做出了一种新的端到端MIL方法。首先,一种有监督的注意力技术指导学习的注意机制,以支持相关观点。第二,一种新颖的自我监督预处理策略将对比度学习应用于整个研究的代表,而不是像先前文献中通常所做的那样。在开放式数据集和时间上的固定设置上进行的实验表明,我们的方法在降低模型大小的同时产生了更高的精度。
模型 BERT BERT 6B Dense Dense Dense ViT ViT ViT ViT ViT 微调预训练 Transf。 121 169 201 微型 小型基础 大型 巨型 GPU 4 · V100 8 · V100 256 · A100 1 · P40 1 · P40 1 · P40 1 · V100 1 · V100 1 · V100 4 · V100 4 · V100 小时 6 36 192 0.3 0.3 0.4 19 19 21 90 216 千瓦时 3.1 37.3 13,812.4 0.02 0.03 0.04 1.7 2.2 4.7 93.3 237.6 表 2. 对于我们分析的 11 个模型:GPU 的类型、该类型的 GPU 数量、小时数以及所用的能量(千瓦时)。例如,我们的 BERT 语言建模 (BERT LM) 实验使用了 8 个 V100 GPU,持续了 36 个小时,总共使用了 37.3 千瓦时。我们注意到,60 亿参数转换器的训练运行时间仅为训练完成时间的约 13%,我们估计完整的训练运行将消耗约 103,593 千瓦时。
摘要 — 新兴的实例优化系统类别已显示出通过专门针对特定数据和查询工作负载实现高性能的潜力。特别是,机器学习 (ML) 技术已成功应用于构建各种实例优化组件(例如,学习索引)。本文研究了利用 ML 技术来增强空间索引(特别是 R 树)的性能,以适应给定的数据和查询工作负载。由于 R 树索引节点覆盖的区域在空间中重叠,因此在搜索空间中的特定点时,可能会探索从根到叶的多条路径。在最坏的情况下,可以搜索整个 R 树。在本文中,我们定义并使用重叠率来量化范围查询所需的无关叶节点访问程度。目标是提高传统 R 树对高重叠范围查询的查询性能,因为它们往往会产生较长的运行时间。我们引入了一种新的 AI 树,将 R 树的搜索操作转换为多标签分类任务,以排除无关的叶节点访问。然后,我们将传统的 R 树扩展到 AI 树,形成混合的“AI+R”树。“AI+R”树可以使用学习模型自动区分高重叠查询和低重叠查询。因此,“AI+R”树使用 AI 树处理高重叠查询,使用 R 树处理低重叠查询。在真实数据集上的实验表明,“AI+R”树可以将查询性能提高到传统 R 树的 500% 以上。
类别学习,即学习将一组刺激物分类或分组,会在感知中引起类别偏见,使得同一类别中的物品被认为比不同类别中的物品更相似。当学习目标强调每个刺激物的个体化时,类别偏见会在多大程度上发展,以及偏见是否在学习过程中自发出现而不是对任务要求的反应尚不清楚。在这里,我们在编码过程中使用功能性磁共振成像 (fMRI) 来测试学习过程中单个刺激物神经表征中的类别偏见。人类参与者(男性和女性)遇到面部混合刺激物,这些刺激物具有独特的名字和共同的姓氏,表明其属于同一类别。参与者被要求学习每张脸的全名。神经模式分类和模式相似性分析用于追踪大脑中的类别信息。结果表明,刺激类别可以在许多额叶、顶叶和枕叶区域的编码过程中被解码。此外,来自同一类别的两个刺激在前额叶皮层中的表征比来自不同类别的两个刺激在物理相似性方面更相似。这些发现表明,仅仅存在类别标签就可以在编码过程中自发地偏向神经表征以强调与类别相关的信息,即使在没有明确的分类要求并且与类别无关的信息仍然与任务目标相关的情况下也是如此。
本文表达的任何观点均为作者观点,而非 IZA 观点。本系列中发表的研究可能包括政策观点,但 IZA 不代表任何机构政策立场。IZA 研究网络致力于遵守 IZA 研究诚信指导原则。IZA 劳动经济研究所是一个独立的经济研究机构,开展劳动经济学研究,并就劳动力市场问题提供基于证据的政策建议。在德国邮政基金会的支持下,IZA 运营着世界上最大的经济学家网络,其研究旨在为我们这个时代的全球劳动力市场挑战提供答案。我们的主要目标是在学术研究、政策制定者和社会之间架起桥梁。IZA 讨论文件通常代表初步工作,并被分发以鼓励讨论。引用此类文件时应说明其临时性质。修订版可直接从作者处获得。
自学学习(SSL)是一种无监督的表示技术,是深度学习中的热门话题。它涉及解决一个人工任务,该任务允许网络学习数据集的语义。然后可以使用所得的特征提取器进行传输学习,以减少解决实际下游任务所需的标记示例数量。这对于计算机辅助诊断具有巨大的实用价值,因为标签需要医学专家,这很昂贵[1]。SSL方法通常应用于图像补丁(例如拼图求解[2],上下文预测[3],对比度学习[4]或视觉变压器[5]),而下游任务通常与整个图像一起使用。此差异要求在两个单独的顺序步骤中实现SSL并转移学习。一种固有地使用补丁的技术是多个实例学习[6],因此对于许多SSL方法而言,可能是更自然的选择。
b'摘要。我们提出了用于解决随机子集和实例的新型经典和量子算法。首先,我们改进了 Becker-Coron-Joux 算法 (EUROCRYPT 2011),将 e O 2 0 . 291 n 降低到 e O 2 0 . 283 n,使用更一般的表示,其值在 {\xe2\x88\x92 1 , 0 , 1 , 2 } 中。接下来,我们从几个方向改进了该问题的量子算法的最新技术。通过结合 Howgrave-Graham-Joux 算法 (EUROCRYPT 2010) 和量子搜索,我们设计了一种渐近运行时间为 e O 2 0 的算法。 236 n ,低于 Bernstein、Je\xef\xac\x80ery、Lange 和 Meurer (PQCRYPTO 2013) 提出的基于相同经典算法的量子行走成本。该算法的优势在于使用带有量子随机存取的经典存储器,而之前已知的算法使用量子行走框架,需要带有量子随机存取的量子存储器。我们还提出了用于子集和的新量子行走,其表现优于 Helm 和 May (TQC 2018) 给出的先前最佳时间复杂度 e O 2 0 . 226 n 。我们结合新技术达到时间 e O 2 0 . 216 n 。这个时间取决于 Helm 和 May 形式化的量子行走更新启发式方法,这也是之前的算法所必需的。我们展示了如何部分克服这种启发式方法,并获得了一个量子时间为 e O 2 0 的算法。 218 n 只需要标准的经典子集和启发式方法。'
量子计算有两种不同的范式。第一种是基于门的量子计算,它与经典数字计算机密切相关。制造基于门的量子计算机很难,因此最先进的设备通常只有几个量子比特。第二种范式是基于 [4] 工作的量子退火。预计未来几年将开发出一台实用的量子计算机。不到十年,量子计算机将开始超越日常计算机,从而带来人工智能的突破、新药的发现和其他领域。目前,各方都在开发量子芯片,这是量子计算机的基础,例如谷歌、IBM、英特尔、Rigetti、QuTech、D-Wave 和 IonQ [5]。这些计算机的大小是有限的,最先进的基于门的量子计算机约为 70 个量子比特,而基于门的量子计算机约为 5000 个量子比特。
时间窗口的选择主要影响分段特征提取程序的有效性。我们提出了一种增强的模式袋表示,可以在宽窗口范围内捕获大脑动态的高级结构。因此,我们为短时公共空间模式算法引入了具有扩展窗口长度的增强实例表示。基于多实例学习,通过稀疏回归选择相关的模式袋以输入袋分类器。所提出的高级结构表示有两个贡献:(i)提高双条件任务的准确性,(ii)通过学习到的稀疏回归拟合更好地理解动态大脑行为。使用支持向量机分类器,在公共运动图像数据集(左手和右手任务)上实现的性能表明,所提出的框架执行的结果非常有竞争力,对脑电图记录的时间变化具有鲁棒性并有利于类可分性。
胃肠道:喉咙痛;口腔粘膜的损伤和溃疡具有食道钻孔的可能性(取决于配方中的摄入量和表面活性剂的摄入量和表面活性剂);粘膜红斑,吞咽困难,表腹性恶心,呕吐,腹泻和腹痛,可能进化为脱水,消化性出血和麻痹性回肠12,17-26;