图5。在远程声音测量的回响房间内的三维声场。A和B:实验设置。LDV(B,灰色框)用于获取由扬声器辐射的声场(A,Black Box)辐射的声场的声音测量。声场在正方形的permid体积(红色)上顺序扫描。在1×0.5-×0.5-m 3矩形体积(b,虚线)中重建声场,声压在与该体积的三个侧面的三个平面上显示。c-f:随着时间的推移,声压的四个快照。c:从源到达的声音。d:波前旅行。e:两次反射,一个从墙壁上,一个从地板上进行。f:两种反射之间的干扰模式。颜色图表示声压的幅度。从Verburg和Fernandez-Grande(2021)复制,经美国物理学会的许可,版权2021。
承担这些分歧的全球负担。[1,2]新的且高度特定的药物输送工具将有助于更好地理解复杂的神经生物学环境,并为高度局部和精确的药物输送技术铺平道路。为了最佳工作,此类设备需要达到良好的化学和生物靶特异性,同时限制了生物相容性问题或相当的副作用。如果将这些设备作为最小化的独立探针实施,则可以轻松地操纵它们以靶向特定细胞,或与不同的实验设置和感应技术结合使用,以促进广泛的诊断和治疗能力,尤其是在深层组织/有机位置。[3]在这里,我们比较了两种高精度药物输送技术,基于压力的微流体和电离基质的能力和局限性。在微流体中,药物运输受到小型流体通道中的液压的高度控制。[4,5]通过连接几个流体源和微生物流体通道,可以轻松地进行混合,开关,筛查和递送各种药物。微流体的领域包括从实验室芯片设备到游离的微流体神经探针的多种实验设置。[4,6]其他感兴趣的技术是电离,其中应用电位的调节可以使精确的剂量控制和化学特异性,只要有效的药物或神经递质是积极或负电荷的。[7]最基本的离子基因组件是有机电子离子泵(OEIP)。[8]OEIP基于一个定义明确的和封装的离子交换膜(IEM),将源电解质储存液与目标电解质分开(通常称为“离子通道”)。从广义上讲,IEM的选择性取决于固定电荷的固有极性,其电荷程度以及其孔径和密度。通过IEM离子通道从源储存库中运输,并通过离子的迁移和被动扩散来积极实现目标电解质。通过改变IEM上的施加电位,可以通过电子控制迁移离子输送率,并且可以估算出施加的电子电流的直接对应关系,并且可以估算传递的药物数量。平面OEIP设备已成功地用于各种神经系统应用,例如,通过输送γ-氨基丁酸来抑制癫痫表现活性。
人工智能 (AI) 辅助决策的研究正在经历巨大的增长,越来越多的研究评估了使用和不使用可解释人工智能 (XAI) 领域的技术对人类决策表现的影响。然而,由于任务和实验设置因目标不同而不同,一些研究报告称通过 XAI 提高了用户的决策表现,而另一些研究报告称影响微乎其微。因此,在本文中,我们使用统计荟萃分析对现有 XAI 研究进行了初步综合,以得出现有研究的启示。我们观察到 XAI 对用户表现有统计上的积极影响。此外,第一批结果表明,人机决策往往会在文本数据上产生更好的任务表现。然而,与单一的人工智能预测相比,我们发现解释对用户的表现没有影响。我们的初步综合引发了未来研究调查根本原因,并有助于进一步开发通过提供有意义的解释有效造福人类决策者的算法。
摘要 - IGBT在各种电力电子应用中扮演至关重要的角色,要求长时间的可靠性。了解其故障机制对于制造商和工程师至关重要。这项研究通过将IGBT降解(尤其是死亡氧化物污染和栅极氧化物污染)与进行的电磁(EM)扰动相关联,以解决差距。使用功率循环系统在600V,16A IGBT上进行加速衰老,揭示了静态和动态参数的显着变化。切换瞬变显示出归因于经验丰富的降解的转弯速度放缓。实验设置证明了降解,切换瞬变(尤其是收集器电流(I C)关闭)之间的直接联系,并减少了执行的EM扰动。关键字 - IGBT,模具降解,闸门氧化降解,加速衰老,IGBTS的信号光谱分析,进行了EM发射。
此外,IIST具有充满活力的研究环境,其中有200多个在一线研究领域参与的博士学位学者。学术程序是为了加强基本面,通过实践工作提供动手经验,增强理解和扩大各个感兴趣领域知识的界限。iist专注于灌输学生的创新文化。IIST中的所有学术实验室都是精心设计的,具有最佳的实验设置和设备。iist在高级推进和激光诊断,虚拟现实和纳米科学和技术方面具有三个卓越中心,学生参与了各种高级和复杂的实验。许多最先进的研究实验室为学生提供了独特的学习环境,以深入研究尖端的研究。随着IIST进入接下来的十年,十年计划向年轻,聪明的学生提供了充足的机会,可以积极参与与太空相关的项目(例如Exoworlds) - ISRO系外行星任务,太空机器人,太空传感器等。
摘要 本文介绍了第一个用所有模态和神经生理信号记录的自然会话语料库。五对二元组(10 名参与者,西班牙语母语人士)被记录了三次,分为三个会话(每个会话约 30 分钟),间隔 4 天。在每个会话期间,都会捕获音频和视频以及神经信号(使用 Emotiv-EPOC 的 EEG)和电生理信号(使用 Empatica-E4)。该资源在多个方面都是原创的。从技术上讲,它是第一个在自然对话情况下收集所有这些类型数据的资源。此外,在不同时期记录相同的二元组为新的纵向研究打开了大门,例如对话者阵营随时间的演变。本文在文献中定位了这种新型资源,介绍了实验设置并描述了丰富语料库的不同注释。
摘要在操作中,印刷电路板(PCB)将面临各种和重复的热机械载荷,这可能导致铜的故障,从而导致PCB本身故障。为了模拟和更好地预测PCB的可靠性,必须定义铜的本构行为。在目前的工作中,在循环拉伸压缩载荷下经常测试了在灵活的PCB行业中经常使用的17 µm滚动退火灯泡。铜的弹性极限较低,塑性变形起着在应变过程中起重要作用。在循环载荷下,已经观察到主要的运动硬化。已通过Lemaitre-Chaboche硬化模型确定了所研究铜胶的塑性行为。接下来,已经开发出一种原始的实验设置,从而可以测量循环载荷下薄铜纤维的疲劳行为。进行了各种负载振幅的测试。已经采用了一个共同的曼森模型来重现实验数据。
著名理论物理学家理查德费曼说过,量子力学的一切都可以用双缝实验来概括。在双缝实验中,你向带有两个窄缝的墙壁逐个发射光子。每个光子落在第二面墙上的哪个位置是概率性的。如果我们绘制光子在后墙上出现的位置,有些地方很有可能,有些则不然。在图 2.1 – 2.3 中,你可以看到显示基本实验设置以及使用光子进行单缝和双缝实验的结果的图表。请注意,屏幕上有些地方可能出现而有些地方不太可能出现,这本身并不是奇怪的部分:我们完全可以用某种理论来解释这一点,在这种理论中,每个光子都具有一些我们不知道的额外自由度(“RFID 标签”),这决定了它去往哪个方向。奇怪的是,对于第二面墙上的某个间隔:
摘要。检测重力介导的纠缠可以提供证据表明重力场服从量子力学。我们使用光子平台报告了现象模拟的结果。模拟测试通过使用该变量介导纠缠并产生理论和实验性见解的量子性质的想法,从而阐明了将来的重力实验所需的操作工具。我们采用三种方法来测试纠缠的存在:贝尔测试,纠缠证人和量子状态层析成像。我们还模拟了通过重力崩溃模型预测的替代方案,或者是由于实验设置中的不完美,并使用量子状态断层扫描来证明缺乏纠缠。模拟加强了两个主要的课程:(1)必须先对哪些路径信息进行编码,然后从重力场中连贯擦除,并且(2)执行铃铛测试导致更强的结论,以证明重力介导的非局部性的存在。
准确校准高纯晶也(HPGE)检测器对于在各种科学和工业应用中精确测量γ辐射至关重要。在本文中,对HPGE探测器的校准进行了研究,从能量,分辨率和效率方面进行了研究。校准源(例如Europium-152和133)用于建立能力和分辨率校准,结果显示出高线性和令人满意的分辨率性能。效率校准最初覆盖了1.4 meV的能量,通过包括及时的γ射线测量值扩展到7.65 MeV。使用六阶多项式方程对效率数据进行建模,这与观察到的值很好地一致。这项研究证实,提示γ测量值可以有效地将HPGE检测器的校准范围扩展到更高的能量。但是,它还强调了需要改进的实验设置和更长的测量时间,以进一步提高高能量效率校准的准确性和可靠性。结果为准确的γ射线测量提供了坚实的基础。