小型化、成本、功能性、复杂性和功耗是电路设计中需要注意的重要且必要的设计特性。小型化和功耗之间存在权衡。智能技术一直在寻找新的范例来继续改善功耗。可逆逻辑是部署以避免功耗的智能计算之一。研究人员提出了许多基于可逆逻辑的算术和逻辑单元 (ALU)。然而,容错 ALU 领域的研究仍在进行中。本文的目的是通过使用奇偶校验保留逻辑门来弥补容错领域新研究人员的知识空白,而不是通过各种来源搜索大量数据。本文还介绍了一种基于高功能的新型容错算术和逻辑单元架构。以表格形式显示了优化方面的比较,结果表明,所提出的 ALU 架构在可逆逻辑综合的所有方面都是最佳平衡。所提出的 ALU 架构采用 Verilog HDL 进行编码,并使用 Xilinx ISE design suite 14.2 工具进行仿真。所提出的架构中使用的所有门的量子成本均使用 RCViewer + 工具进行验证。
3 另外,道具的展示顺序也是随机的。 4 由于10个项目中有4个被呈现,因此如果随机呈现,每个项目出现的次数可能会有所不同。因此,可以使用平衡的不完全区组设计(Louviere 和 Flynn,2010)来确保项目出现的频率相等。然而,由于本章的样本量非常大,达到 150,010(使用下面描述的计数方法),我们确定由于随机呈现而导致的出现次数差异很小。
umass.edu › ramanathan_clksync PDF 作者:P Ramanathan — 作者:P Ramanathan 最大可靠性和高性能......商用飞机的规定小于......通过使用数字签名²或。
摘要 — 量子网络是在物理上分离的量子处理器之间传输以量子比特或量子位编码的信息的手段。鉴于量子位的不稳定性,这种网络的设计具有挑战性,需要在可靠性和效率之间取得谨慎的平衡。通常,量子网络分为两类:利用量子纠缠进行量子隐形传态的网络和直接传输量子信息的网络。在本文中,我们介绍了 SurfaceNet,这是第二类量子网络,它使用表面代码作为逻辑量子位来保存和传输信息。我们使用表面代码的方法可以容错地纠正网络内的操作和光子丢失错误。我们提出了一种新颖的单向量子通信程序,旨在更好地将表面代码集成到我们的网络架构中。我们还提出了一种高效的路由协议,可以优化通信过程的资源利用率。模拟结果表明,SurfaceNet 显著提高了整体通信保真度。
1. 项目概要 各种物理系统的研究正在朝着实现实用量子计算机的方向发展。在大多数系统中,一个主要挑战在于实用量子计算所需的高度复杂的量子处理器。另一方面,光学系统可以用紧凑的量子处理器进行实用量子计算。由于这种量子处理器已经得到证实,开发的主要重点是光量子比特的生成。作为光量子比特源,我们提出了量子任意波形发生器 (Q-AWG)。Q-AWG 是一种多功能量子光源,可以输出任意量子态的光和任意脉冲波形。由于其高度的通用性,Q-AWG 可以作为实用光量子计算机的核心光源,并有可能解决在实现实用量子计算机的道路上出现的各种挑战。Q-AWG 确实是一个“终极量子光源”,它的实现将大大加速光量子计算机的发展。
本文介绍了自适应控制方法在将自主固定翼飞机回收到航空母舰上的应用。所用的控制结构是模型参考自适应控制,在俯仰、滚转、偏航和空速轴上实施,以提供飞机的 6 个自由度控制。控制系统是为 NAVAIR ExJet 飞机模型开发的。控制器的结构包括一阶线性模型跟随器和自适应批评控制器。自适应用于增强自适应批评控制器产生的命令信号,使用以下方法:自适应偏差校正器、最佳控制修改和局部线性模型补偿。基于状态空间模型的逆控制器生成控制效应器命令。控制系统参考输入是旋转速率和空速,提供外环控制器来引导飞机到达着陆点。控制系统设计是通过使用基于标称误差、时间延迟裕度和着陆精度的指标来实现的。在标称、效应器故障和控制系统建模错误条件下评估控制系统。定义的控制系统能够在标称、故障和建模错误条件下提供所需的控制。
量子计算有望在某些问题上提供比传统计算更快的速度。然而,发挥其全部潜力的最大障碍是这些系统固有的噪声。这一挑战被广泛接受的解决方案是实现容错量子电路,而这超出了当前处理器的能力。我们在此报告了在嘈杂的 127 量子比特处理器上进行的实验,并展示了在超越蛮力传统计算的规模上对电路体积的准确期望值的测量。我们认为这代表了量子计算在容错时代之前的实用性的证据。这些实验结果得益于超导处理器在这种规模上的相干性和校准方面的进步,以及表征 1 和可控制地操纵如此大型设备上的噪声的能力。我们通过将测量的期望值与精确可验证电路的输出进行比较来确定其准确性。在强纠缠状态下,量子计算机提供了正确的结果,而基于纯态的一维(矩阵积态,MPS)和二维(等距张量网络态,isoTNS)张量网络方法 2,3 等领先的经典近似方法则无法实现。这些实验展示了实现近期量子应用的基础工具 4,5 。
光子学是构建室温下运行的模块化、易于联网的量子计算机的首选平台。然而,到目前为止,还没有提出具体的架构来同时利用编码成光态的量子比特和生成它们的现代工具的优势。在这里,我们提出了一种可扩展容错光子量子计算机的设计,该设计基于理论和技术的最新发展。我们架构的核心是生成和操纵由玻色子量子比特和压缩真空态组成的三维资源状态。该提案利用最先进的程序进行非确定性玻色子量子比特的生成,并结合连续变量量子计算的优势,即使用易于生成的压缩态实现克利福德门。此外,该架构基于二维集成光子芯片,用于在一个时间和两个空间维度上产生量子比特簇状态。通过减少与现有架构相比的实验挑战并实现室温量子计算,我们的设计为可扩展的制造和操作打开了大门,这可能使光子学在通往具有数百万量子比特的量子计算机的道路上超越其他平台。