过去 20 年,我们在创建、控制和测量超导“人造原子”(量子比特)和存储在谐振器中的微波光子的量子态方面取得了令人瞩目的实验进展。除了作为研究全新领域强耦合量子电动力学的新型试验台之外,“电路 QED”还定义了一种基于集成电路的全电子量子计算机的基本架构,该集成电路的半导体被超导体取代。人造原子基于约瑟夫森隧道结,它们的尺寸相对较大(约毫米),这意味着它们与单个微波光子的耦合非常强。这种强耦合产生了非常强大的状态操纵和测量能力,包括创建极大(> 100 个光子)“猫”态和轻松测量光子数奇偶性等新量的能力。这些新功能使基于在微波光子的不同 Fock 态叠加中编码量子信息的“连续变量”量子误差校正新方案成为可能。在我们尝试构建大规模量子机时,我们面临的最大挑战是容错能力。如何用大量不完美的部件构建出一台近乎完美的机器?二战后,冯·诺依曼开始在经典计算领域探讨这个问题 [ 1 ] 。1952 年,他在加州理工学院的一系列讲座中(这些讲座于 1956 年发表 [ 2 ] ;在耶鲁大学的西利曼讲座中,他未能出席,但其手稿在他死后出版 [ 3 ] 。除了思考当时粗糙、不可靠的真空管计算机外,他还对大脑中复杂神经元网络的可靠计算能力着迷。克劳德·香农 (Claude Shannon) 也对这个问题非常感兴趣 [ 5 ] ,他的硕士论文首次证明开关和继电器电路可以执行任意布尔逻辑运算 [ 4 ] 。冯·诺依曼证明(并不十分严格),一个可由 L 个可靠门网络计算的布尔函数,也可以由 O(L log L)个不可靠门网络可靠地(即以高概率)计算。Dobrushin 和 Ortyukov [6] 严格证明了这一结果。若要进一步了解该领域,可参考 [7-10] 等相关著作。现代观点将使用不可靠设备的可靠计算问题与香农信息论 [11] 联系起来,该理论描述了如何在噪声信道上进行可靠通信。如图 1 所示,在香农信息论中,只有通信信道被视为不可靠的,输入处的编码和输出处的解码被认为是完美的。通过使用对为香农通信问题设计的代码字进行操作的电路模块并经常检查它们,不可靠的电路也可以执行可靠的计算。诀窍在于找到区分模块输出和输入差异的方法,这些差异是故意的(即由于模块正确计算了输入的预期功能)还是错误的 [ 10 ] 。除了与信息论的这种关键联系之外,与控制论也有重要的联系,如图 2 所示。量子计算机是一个动态系统,尽管噪音和错误会不断发生,我们仍试图控制它。诺伯特·维纳创立的经典控制理论处理容易出错的系统(传统上称为“工厂”,实际上可能代表汽车制造厂或化工厂)。如图 3 所示,传感器连续测量工厂的状态,控制器分析这些信息并使用它来(通过“执行器”)向工厂提供反馈,以使其稳定可靠地运行。鲁棒控制系统能够处理传感器、控制器和执行器单元也可能由不可靠的部件制成的事实。我们会发现这是一个有用的观点,但在思考量子系统的控制时,我们必须处理许多微妙的问题,因为我们知道对量子态的测量会通过测量“反向作用”(状态崩溃)扰乱状态。
升降舵是飞行控制表面,通常位于飞机后部,用于控制飞机的俯仰、迎角和机翼升力。最关键的驱动装置是纵向飞机控制,其故障将导致灾难性的飞机坠毁。本文提出了一种飞机高冗余容错控制 (HRFTC) 策略,以适应关键传感器和执行器的故障。针对传感器提出了改进的三重模块冗余 (MTMR),针对执行器提出了双重冗余 (DR)。详细说明了控制律、飞行员命令、信号调节和故障的工作原理。此外,PID 控制器用于通过将升降舵位置与设定点进行比较来调整升降舵位置。结果表明,当发生故障时,系统成功检测到故障并快速容忍故障,而不会干扰飞机的飞行。这项研究对于航空电子行业制造高度可靠的机器以确保人身和环境安全具有重要意义。
我要感谢我的学术导师 John Preskill 的深刻指导。他为这篇论文中的许多想法埋下了种子。我感谢 Oskar Painter 和他的团队成员,特别是 Eunjong Kim 和 Xueyue “Sherry” Zhang,感谢他们进行了许多有趣的讨论,并提出了他们对量子信息的不同看法。我感谢 Fernando Brandão 和 Xie Chen 与 John 和 Oskar 一起担任我的论文答辩委员会成员。我从加州理工学院的许多研究人员、访问过加州理工学院的人以及我在其他地方遇到的人那里受益匪浅,这里就不一一列举了,我对他们每个人都心存感激。我想特别提到一些我曾多次交谈过的人:Victor Albert、Michael Beverland、Thom Bohdanowicz、Aaron Chew、Richard Kueng,尤其是 Aleksander Kubica。我非常感谢 ARO-LPS (W911NF-18-1-0103) 和 NSF (PHY-1733907) 的资助。我使用“vZome”软件 (https://vzome.com/home/) 创建了第 4 章中的几个图形。最后,我要感谢我的家人和朋友一直以来的支持。
有三个级别可以应用容错功能 - 硬件、软件和系统(用户界面)。所有三个级别都容易受到设计、实施或维护错误的影响 - 人为错误以硬件、代码或用户界面中的故障形式存在,并体现在系统行为中。硬件在这三个级别中是独一无二的,因为它容易“磨损”和损坏。传统的容错可以补偿计算资源(硬件)中的故障。通过管理额外的硬件资源,计算机子系统可以提高其持续运行的能力。确保硬件容错的措施包括冗余通信、复制处理器、额外内存和冗余电源/能源供应。这种冗余的管理通常涉及软件的使用。硬件容错在计算机发展的早期尤为重要,当时机器故障间隔时间以分钟为单位。
随时间变化,则结果将不满足上述语义特征,因此不是状态机。这是因为发送到执行器的值(状态机的输出)不仅取决于对状态机的请求,而且还取决于循环的执行速度。在上面使用的结构中,通过将循环移入监视器,可以避免此问题。实际上,必须根据状态机和客户端来构建系统并不构成真正的限制。任何可以按照过程和过程调用进行结构化的东西也可以使用状态机和客户端进行结构化 - 状态机实现过程,请求实现过程调用。事实上,与通常的过程调用相比,状态机在系统结构上允许更大的灵活性。使用状态机,发出请求的客户端不会延迟到该请求被处理为止,并且请求的输出可以发送到发出请求的客户端以外的某个地方。我们还没有遇到过无法在状态机和客户端方面进行干净编程的应用程序。
本文讨论了容错飞行控制系统的设计和开发,这是作者硕士学位论文研究要求的一部分。该项目考虑了安全关键系统、可靠系统、容错系统、航空电子和嵌入式系统的要求。拜占庭弹性和共模故障避免目前被认为超出了这项工作的范围。为这项工作设计的容错系统设置为三重模块冗余系统,以容忍系统内存在一个故障。该系统采用 PC/104 嵌入式 PC 平台实现。Microsoft Flight Simulator 被用作测试平台来生成输入数据并通过展示由飞行控制系统控制的飞行来演示成功的操作。最终结果表明,可以开发一个容错系统来在系统运行时成功容忍一个故障。
在外太空中有超过21000个对象,并暴露于苛刻的空间环境中。空间对象的大小有很大变化。我们的研究集中于小型卫星,例如立方体,这些卫星必须尊重时间,空间和能量限制。为了解决此问题,本文介绍并评估了两个容忍在线调度算法算法:算法将所有任务安排为Aperiodic(称为OneOff),而将到达任务放置为Aperiodic或Quartiac ofic odic或周期性任务(称为Oneoff&Cyclic)。基于几种情况,结果表明,订购策略的性能受到系统负载的影响以及与要执行的所有任务的简单和双重任务的比例。“最早的截止日期”和“最早到达时间”为Oneoff的订购政策,或“最小懈怠”订购策略,用于单一和周期性,拒绝所有测试的场景中最小任务。本文还介绍了评估订购策略实时性能的计划时间的分析,并表明Oneoff比OneOff&Cyclic所需的时间更少。最后,发现所研究的算法在恶劣的环境中的性能也很好,并提供与基于三重模块化冗余的系统相同的可靠性水平,系统功耗较少。
I II III 因素 1 (H1):不信任他人的自我中心主义 (α=.79) 12. 人们可能会说好话,但最终他们最关心的是自己的幸福。 5.03 (1.12) .65 -.05 .00 16. 人们更有可能维护自己的权利,而不是承认他人的权利。 4.70 (1.06) .64 -.04 .00 2. 人们会做一些轻微的错事来获得自己的利益。 4.48 (1.11) .60 .08 .09 17. 人们撒谎是为了避免麻烦。 4.61 (1.08) .60 .01 .07 6. 人们撒谎是为了出人头地。 4.35 (1.21) .54 .13 .16因素 2 (H2):相信人们的诚实 (α=.70) 5. 人们通常过着诚实正直的生活 4.16 (1.17) -.11 -.70 .14 8. 人们通常诚实地与他人打交道 4.55 (1.03) .13 -.65 -.15 1. 人们基本上是诚实的 4.36 (1.19) .08 -.61 -.15 14. 人们说到做到 4.00 (1.08) -.11 -.50 .16 因素 3 (H3):不相信人们的谨慎 (α=.67) 4. 人们怀疑别人对自己很友善,因此很谨慎 3.90 (1.09) .05 -.07 .64 10. 人们认为不信任他人更安全4.03 (1.14) .13 .03 .54 13. 人们内心不愿意帮助别人 3.53 (1.10) .00 .11 .53 9. 人们很谨慎,因为他们认为有人会利用他们 4.38 (1.08) .20 -.15 .43 最大似然法,Promax 旋转 特征值 3.93 1.90 1.16 贡献率 30.3% 14.6% 8.9% 累积贡献率 30.3% 44.8% 53.7% 因子间相关性 I - 0.25 0.55 II - - 0.31
13:50-14:50 第 6 节 主席:Toya Ohashi 和 Hiromi Kanegae 先天性代谢错误的体内基因治疗 1) 针对罕见疾病患者正在进行的基因治疗临床试验的结果:MPS IIIa、GSDIa、OTC 缺乏症和威尔逊氏病 Eric Crombez – (Ultragenyx Pharmaceutical Inc. 美国加利福尼亚州诺瓦托) 2) 通过在小鼠中表达血脑屏障穿透酶的 AAV 使 GM1 神经节苷脂储存完全正常化 Koki Matsushima (慈惠会大学医学院基因治疗系)