Loading...
机构名称:
¥ 9.0

过去 20 年,我们在创建、控制和测量超导“人造原子”(量子比特)和存储在谐振器中的微波光子的量子态方面取得了令人瞩目的实验进展。除了作为研究全新领域强耦合量子电动力学的新型试验台之外,“电路 QED”还定义了一种基于集成电路的全电子量子计算机的基本架构,该集成电路的半导体被超导体取代。人造原子基于约瑟夫森隧道结,它们的尺寸相对较大(约毫米),这意味着它们与单个微波光子的耦合非常强。这种强耦合产生了非常强大的状态操纵和测量能力,包括创建极大(> 100 个光子)“猫”态和轻松测量光子数奇偶性等新量的能力。这些新功能使基于在微波光子的不同 Fock 态叠加中编码量子信息的“连续变量”量子误差校正新方案成为可能。在我们尝试构建大规模量子机时,我们面临的最大挑战是容错能力。如何用大量不完美的部件构建出一台近乎完美的机器?二战后,冯·诺依曼开始在经典计算领域探讨这个问题 [ 1 ] 。1952 年,他在加州理工学院的一系列讲座中(这些讲座于 1956 年发表 [ 2 ] ;在耶鲁大学的西利曼讲座中,他未能出席,但其手稿在他死后出版 [ 3 ] 。除了思考当时粗糙、不可靠的真空管计算机外,他还对大脑中复杂神经元网络的可靠计算能力着迷。克劳德·香农 (Claude Shannon) 也对这个问题非常感兴趣 [ 5 ] ,他的硕士论文首次证明开关和继电器电路可以执行任意布尔逻辑运算 [ 4 ] 。冯·诺依曼证明(并不十分严格),一个可由 L 个可靠门网络计算的布尔函数,也可以由 O(L log L)个不可靠门网络可靠地(即以高概率)计算。Dobrushin 和 Ortyukov [6] 严格证明了这一结果。若要进一步了解该领域,可参考 [7-10] 等相关著作。现代观点将使用不可靠设备的可靠计算问题与香农信息论 [11] 联系起来,该理论描述了如何在噪声信道上进行可靠通信。如图 1 所示,在香农信息论中,只有通信信道被视为不可靠的,输入处的编码和输出处的解码被认为是完美的。通过使用对为香农通信问题设计的代码字进行操作的电路模块并经常检查它们,不可靠的电路也可以执行可靠的计算。诀窍在于找到区分模块输出和输入差异的方法,这些差异是故意的(即由于模块正确计算了输入的预期功能)还是错误的 [ 10 ] 。除了与信息论的这种关键联系之外,与控制论也有重要的联系,如图 2 所示。量子计算机是一个动态系统,尽管噪音和错误会不断发生,我们仍试图控制它。诺伯特·维纳创立的经典控制理论处理容易出错的系统(传统上称为“工厂”,实际上可能代表汽车制造厂或化工厂)。如图 3 所示,传感器连续测量工厂的状态,控制器分析这些信息并使用它来(通过“执行器”)向工厂提供反馈,以使其稳定可靠地运行。鲁棒控制系统能够处理传感器、控制器和执行器单元也可能由不可靠的部件制成的事实。我们会发现这是一个有用的观点,但在思考量子系统的控制时,我们必须处理许多微妙的问题,因为我们知道对量子态的测量会通过测量“反向作用”(状态崩溃)扰乱状态。

量子纠错与容错简介

量子纠错与容错简介PDF文件第1页

量子纠错与容错简介PDF文件第2页

量子纠错与容错简介PDF文件第3页

量子纠错与容错简介PDF文件第4页

量子纠错与容错简介PDF文件第5页

相关文件推荐