运输应用需要在功率(和扭矩)密度方面提供高性能。同时,由于这些应用对安全至关重要,因此需要相当高的可靠性和/或容错能力。在所有可能影响电机可靠性的因素中,局部放电开始是最关键的因素之一,特别是对于低压、随机缠绕的机器。本文对航空航天应用的电机中的局部放电进行了广泛的实验研究。在代表性航空航天环境中使用正弦和快速上升脉冲进行测量,模拟整个商用飞机任务期间及之后遇到的典型环境条件(即低至 30 毫巴)。作为调查的主要结果,证明用于启动主飞行控制面的电机具有更高的局部放电开始风险。因此,它们的绝缘系统需要极其仔细的设计。
• RISC-V 是 2015 年向社区发布的一种新型处理器架构 • RISC-V 处理器内核从小型微控制器内核一直运行到用于 AI/ML 和图像处理的高性能矢量处理器。• 作为开源/开放架构,RISC-V 内核可以配置为支持任意容错,包括三重模块冗余。• 关于 RISC-V 处理器的架构辐射问题和缓解措施知之甚少。• 硬件实现和软件操作的配置敏感性至关重要,因为用户可以根据需要进行配置。• FY23 的工作重点是配备 U74 处理器的 StarFive JH7110。• FY24 的工作重点将集中在 SiFive HiFive Unmatched (U74) 和 X280 开发板上。U74 和 X280 核心支持纠错,FY23 StarFive JH7110 表现出令人印象深刻的容错能力。
摘要 — 运输应用中使用的现代电机需要在功率(和扭矩)密度方面提供高性能。同时,由于这些应用对安全至关重要,因此需要相当高的可靠性和/或容错能力。在所有可能影响电机可靠性的因素中,局部放电的发生是最关键的因素之一,尤其是对于低压、随机绕线的电机。本文对航空航天应用的电机中的局部放电进行了广泛的实验研究。在代表性航空航天环境中使用正弦和快速上升脉冲进行测量,模拟商用飞机任务期间及之后遇到的典型环境条件(即低至 30 mbar)。作为调查的主要结果,证明用于启动主飞行控制面的电机具有更高的局部放电发生风险。因此,它们的绝缘系统需要非常仔细的设计。
推动电力系统进步的关键技术包括固态碳化硅 (SiC) 或氮化镓 (GaN) 电力电子设备、浪涌保护系统、双向电力系统、先进的冷却方法、自诊断系统和分布式系统架构。电力系统可以通过多保真建模工具进行开发,以提供“虚拟认证”的证据,但最终需要硬件集成和演示基础设施。这些系统的一些关键考虑因素是容错能力、布线考虑因素和恶劣环境能力。未来有几种技术将推动整个飞机电力系统的采用。这些包括能量存储和回收系统、高压电池系统、燃料电池、自重构(修复)概念、应急电源系统、网络预防系统工具、先进的 EMI/EMC 滤波系统以及无线和嵌入式传感。本文后面将进一步讨论其中一些主题。
由集体耦合引起的相干误差是许多现实量子系统中的主要噪声形式,其破坏性比通常认为的随机误差更大。在此,我们提出通过代码连接将稳定码与恒定激励码相结合。也就是说,通过将 [[ n , k , d ]] 稳定外码与双轨内码连接,我们得到一个 [[2 n , k , d ]] 恒定激励码,它不受相干相位误差的影响,并且等同于泡利旋转稳定码。当稳定外码具有容错能力时,恒定激励码对随机误差具有正的容错阈值。将外码设置为四量子比特振幅阻尼码可得到一个八量子比特恒定激励码,该码可纠正单个振幅阻尼误差,并且我们分析了该码作为量子存储器的潜力。
尽管异步计算机操作的研究并非 AFT1 计划的主要目标,但研究异步计算机操作已成为一项主要活动。异步架构概念的初衷是提高 EM1 免疫力和整个系统的容错能力。人们认为,随着设计的成熟,对异步操作(可测试性、数据一致性和不确定操作)的担忧将得到缓解。在设计和鉴定 DFCS 方面投入了大量工程努力,并且对异步计算机操作有了更多的了解。尽管在鉴定过程中投入了大量精力和改进,但对可测试性的担忧仍然存在,因为在飞行测试中发生了与异步操作相关的异常。异步操作,加上解耦控制和双重故障/操作能力的复杂性,导致设计任务增加、鉴定期延长和可测试性边际降低。在扩展包络线后,对 DFCS 的任务性能进行飞行测试评估未发现任何与异步操作相关的新异常。
卫星通信技术的快速发展拓展了卫星网络的边界,成为 5G、超 5G(B5G)和 6G 等新标准的基石。这些为先进的卫星地面集成奠定了基础,为应对前所未有的技术挑战提供了机会。通过创建适用于各种用例的高弹性卫星网络,科学界正在为跨不同环境的安全高速通信开辟可能性。将卫星系统与地面和空中网络相结合,催化了新的研发方向,形成了一种无缝的“随时随地”服务模式。这种集成支持分布式卫星架构,为商业和战略领域的两用应用提供了更高的灵活性、可扩展性和容错能力。这种转变吸引了学术界和工业界的注意力,致力于确保安全、有弹性和智能的卫星网络,这些网络利用人工智能、先进的传感和强大的安全性——这是 6G 生态系统必不可少的一套驱动因素。
摘要 — 在过去十年中,近似计算 (AxC) 已被研究作为一种可能的替代计算范式。它已被用于降低传统容错方案(如三重模块冗余 (TMR))的开销成本。最近的提议之一是四重近似模块冗余 (QAMR) 的概念。QAMR 降低了相对于传统 TMR 结构的开销成本,同时保证了相同的容错能力。在本文中,我们提出了一种新的近似技术来实现 QAMR,并进行了设计空间探索 (DSE) 以找到 QAMR 帕累托最优实现。此外,我们为所提出的架构提供了一个新的多数表决器的设计。实验结果表明,对于 FPGA 和 ASIC 技术,分别有 85.4% 和 97% 的电路可以找到与 TMR 对应物相比实现面积和/或延迟增益的 QAMR 变体。索引词 — 容错;纠错;三重模块冗余;TMR;近似计算;四重近似模块冗余;QAMR;数字电路;近似计算
超维 (HD) 计算是计算机体系结构和理论神经科学交叉领域的一个新兴领域 [Kanerva, 2009]。它基于这样的观察:大脑能够使用以下电路执行复杂任务:(1) 功耗低、(2) 精度要求低、(3) 对数据损坏具有高度鲁棒性。HD 计算旨在将类似的设计原则延续到新一代数字设备中,这些设备具有很高的能效、容错能力,非常适合自然信息处理 [Rahimi et al. , 2018]。最近关于神经网络的大量研究也从大脑中汲取了灵感,但这些方法的现代实例已经偏离了上述要求。这些网络的成功取决于神经上不合理的选择,最明显的是显著的深度和通过反向传播进行的训练。此外,从实际角度来看,训练这些模型通常需要高精度和大量的能量。虽然大量文献试图通过神经网络改善这些问题,但这些努力大多是为了解决特定的性能限制。相比之下,上述属性
我们提出了一种新方法,借助量子干涉显著提高基于量子比特的暗物质探测实验中的信号速率。各种量子传感器都具有探测波状暗物质的理想特性,而量子计算机中常用的量子比特是暗物质探测器的绝佳候选。我们证明,通过设计适当的量子电路来操纵量子比特,信号速率与 n 2 q 成比例,其中 nq 是传感器量子比特的数量,而不是与 nq 成线性关系。因此,在使用大量传感器量子比特的暗物质探测中,可以预期信号速率会显著增加。我们提供了一个量子电路的具体示例,该电路通过连贯地组合每个单独量子比特由于其与暗物质相互作用而产生的相位演变来实现这种增强。我们还证明该电路对失相噪声具有容错能力,失相噪声是量子计算机中的关键量子噪声源。这里提出的增强机制适用于各种量子计算机模式,只要与增强暗物质信号相关的量子操作可以应用于这些设备。