FPGA 的辐射耐受性是一个重要的研究领域,特别是对于航空航天和卫星任务中使用的电子设备的可靠计算。这项研究的动机是由于辐射粒子引起的单粒子效应导致 FPGA 硬件可靠性下降。冗余是一种常用的技术,可以增强辐射敏感应用的容错能力。但是,冗余会带来过多的面积消耗、延迟和功耗方面的开销。此外,冗余电路实现的结构和资源使用情况会随着冗余插入算法以及使用的冗余级数而变化。辐射环境在任务的运行时间跨度内会根据轨道和空间天气条件而变化。因此,还应在运行时根据当前辐射水平优化冗余引起的开销。在本文中,我们提出了一种称为动态可靠性管理 (DRM) 的技术,该技术利用辐射数据,对其进行解释,选择合适的冗余级别,并执行运行时重新配置,从而改变目标计算模块的可靠性级别。DRM 由两部分组成。DRM 的设计时工具流生成具有不同性能因子大小的电路各种冗余实现库。运行时工具流在利用辐射/错误率数据的同时,选择所需的冗余级别并使用相应的冗余实现重新配置计算模块。DRM 的两个部分都已通过各种基准测试的实验进行了验证。我们从这次实验中得出的最重要发现是,通过使用 DRM 的部分重新配置功能,可以将性能提高数倍,例如,与静态可靠性管理技术相比,我们的数据分类器和矩阵乘法器案例研究的性能结果分别提高了 7.7 倍和 3.7 倍。因此,DRM 允许在应用程序运行时在计算可靠性和性能开销之间保持适当的权衡。
在过去的几十年中,无人机的运行次数有所增加。起初,无人机主要用于军事目的。如今,许多不同类型的无人机 (UAV) 执行的任务对于民用空域的载人飞机来说过于枯燥、肮脏或危险。阻碍无人机在民用领域普及的主要问题是无人机系统 (UAS) 与空中交通管理系统的集成以及 UAS 的安全性。对于载人航空,有许多不同的法规迫使制造商和运营商提高飞机的安全性和可靠性。当时,没有针对无人机系统的此类法规。不同的来源显示了当前的无人系统有多危险。一些报告显示,无人机事故发生率约为每 100,000 飞行小时 32 起,是商用班轮飞机事故发生率的 3,200 倍(国防科学委员会研究,2004 年)。这些数字表明,在无人系统的安全领域还有很多工作要做。世界各地的各种机构现在都专注于 UAS 使用的安全方面(Loh 等人,2006 年、2009 年;Uhlig 等人,2006 年;Lin 等人,2014 年)。研究人员试图说服制造商,必须从开发过程一开始就考虑安全性,并且不必大幅增加系统成本。基于 COTS 元素和子系统的设计尤其危险。众所周知,复杂系统的整体安全性取决于每个元素的安全性。但是,有办法确保单个元素或子系统的故障不会导致事故。无人机的安全性取决于几个不可预测的因素,例如飞机内部和外部的敌对行动。发生故障时,最重要的措施必须是保持飞机的可控性。无人机主要使用自动驾驶仪进行飞行。自动飞行控制系统设计用于正常运行,当出现不可预测的故障时,可能无法做出足够有效的反应。在发生不可预测的故障时确保安全的一种方法是重新配置飞行控制系统 (Kozak et al ., 2014),这将使控制系统具有容错能力并确保在发生故障时飞机的可控性。
实现量子计算的主要障碍 [1] 是处理量子误差。从环境中分离出一点量子信息已经够具挑战性的了;然而,为了实现一台有用的量子计算机,必须维持数千个纠缠量子比特的相干性。拓扑量子比特的用途在于它们内置了容错能力,这是由于任意子和边界模式之间的空间分离 [2]。马约拉纳零模式 [3-5] 是 p 波超导纳米线的端模式,是拓扑量子计算中最有前途的方向之一 [4,6-14]。这些马约拉纳端模式可以非局部地存储信息,并且可以编织起来执行受拓扑保护的逻辑门 [15-22]。尽管拓扑量子比特具有一定程度的防错能力,但它们仍然需要纠错才能完全实现为计算量子比特。完美的马约拉纳量子比特将具有无限长,并保持在零温度下。非零温度会导致有限的准粒子密度,从而导致量子比特出现错误。存在诸如环面码 [ 2 ]、表面码 [ 23 – 26 ] 和颜色码 [ 27 – 29 ] 之类的纠错码,它们可以在马约拉纳量子比特上实现 [ 30 – 37 ] 或平面码 [ 38 , 39 ] 等其他方案。然而,这些纠错方案需要大量开销,需要大量冗余量子比特来捕获和纠正错误。正如 Kitaev 指出的那样 [ 2 ],物质的任何拓扑相都可以识别为纠错码。在这一脉络中,我们要问,由马约拉纳纳米线链构建的一维 (1D) 费米子拓扑相 [40, 41] 是否可以与“费米子宇称保护的纠错码”联系起来。只要费米子宇称守恒,这样的链就可以防止量子误差,而且只需要一行物理量子比特,而不是一个表面。在本文中,我们展示了如何使用马约拉纳纳米线链来显著提高量子比特的寿命,因为马约拉纳量子比特中存在不同错误类型的层次结构。由于观察到的密度出乎意料的高
过去 20 年,我们在创建、控制和测量超导“人造原子”(量子比特)和存储在谐振器中的微波光子的量子态方面取得了令人瞩目的实验进展。除了作为研究全新领域强耦合量子电动力学的新型试验台之外,“电路 QED”还定义了一种基于集成电路的全电子量子计算机的基本架构,该集成电路的半导体被超导体取代。人造原子基于约瑟夫森隧道结,它们的尺寸相对较大(约毫米),这意味着它们与单个微波光子的耦合非常强。这种强耦合产生了非常强大的状态操纵和测量能力,包括创建极大(> 100 个光子)“猫”态和轻松测量光子数奇偶性等新量的能力。这些新功能使基于在微波光子的不同 Fock 态叠加中编码量子信息的“连续变量”量子误差校正新方案成为可能。在我们尝试构建大规模量子机时,我们面临的最大挑战是容错能力。如何用大量不完美的部件构建出一台近乎完美的机器?二战后,冯·诺依曼开始在经典计算领域探讨这个问题 [ 1 ] 。1952 年,他在加州理工学院的一系列讲座中(这些讲座于 1956 年发表 [ 2 ] ;在耶鲁大学的西利曼讲座中,他未能出席,但其手稿在他死后出版 [ 3 ] 。除了思考当时粗糙、不可靠的真空管计算机外,他还对大脑中复杂神经元网络的可靠计算能力着迷。克劳德·香农 (Claude Shannon) 也对这个问题非常感兴趣 [ 5 ] ,他的硕士论文首次证明开关和继电器电路可以执行任意布尔逻辑运算 [ 4 ] 。冯·诺依曼证明(并不十分严格),一个可由 L 个可靠门网络计算的布尔函数,也可以由 O(L log L)个不可靠门网络可靠地(即以高概率)计算。Dobrushin 和 Ortyukov [6] 严格证明了这一结果。若要进一步了解该领域,可参考 [7-10] 等相关著作。现代观点将使用不可靠设备的可靠计算问题与香农信息论 [11] 联系起来,该理论描述了如何在噪声信道上进行可靠通信。如图 1 所示,在香农信息论中,只有通信信道被视为不可靠的,输入处的编码和输出处的解码被认为是完美的。通过使用对为香农通信问题设计的代码字进行操作的电路模块并经常检查它们,不可靠的电路也可以执行可靠的计算。诀窍在于找到区分模块输出和输入差异的方法,这些差异是故意的(即由于模块正确计算了输入的预期功能)还是错误的 [ 10 ] 。除了与信息论的这种关键联系之外,与控制论也有重要的联系,如图 2 所示。量子计算机是一个动态系统,尽管噪音和错误会不断发生,我们仍试图控制它。诺伯特·维纳创立的经典控制理论处理容易出错的系统(传统上称为“工厂”,实际上可能代表汽车制造厂或化工厂)。如图 3 所示,传感器连续测量工厂的状态,控制器分析这些信息并使用它来(通过“执行器”)向工厂提供反馈,以使其稳定可靠地运行。鲁棒控制系统能够处理传感器、控制器和执行器单元也可能由不可靠的部件制成的事实。我们会发现这是一个有用的观点,但在思考量子系统的控制时,我们必须处理许多微妙的问题,因为我们知道对量子态的测量会通过测量“反向作用”(状态崩溃)扰乱状态。
征集创新和原创论文的主题领域包括(但不限于):模拟:具有模拟主导创新的电路;放大器、比较器、振荡器、滤波器、参考电路;非线性模拟电路;数字辅助模拟电路;传感器接口电路;MEMS 传感器/执行器接口、10nm 以下技术的模拟电路。数据转换器:奈奎斯特速率和过采样 A/D 和 D/A 转换器;嵌入式和特定应用的 A/D 和 D/A 转换器;时间到数字转换器;创新和新兴的转换器架构。数字电路、架构和系统*:微处理器、微控制器、应用处理器、图形处理器、汽车处理器、机器学习 (ML) 和人工智能 (AI) 处理器以及片上系统 (SoC) 处理器的数字电路、架构、构建模块和完整系统(单片、小芯片、2.5D 和 3D)。用于通信、视频和多媒体、退火、优化问题解决、可重构系统、近阈值和亚阈值系统以及新兴应用的数字系统和加速器。用于处理器的芯片内通信、时钟分配、软错误和容错设计、电源管理(例如稳压器、自适应数字电路、数字传感器)和数字时钟电路(例如 PLL、DLL)的数字电路。数字 ML/AI 系统和电路,包括近内存和内存计算以及针对新 ML 模型(如 Transformer、图形和脉冲神经网络以及超维计算)的硬件优化。图像传感器、医疗和显示:图像传感器;视觉传感器和基于事件的视觉传感器;汽车、激光雷达;超声波和医学成像;可穿戴、可植入、可摄取设备;生物医学传感器和 SoC、神经接口和闭环系统;医疗设备;微阵列;体域网络和身体耦合通信;用于医疗和成像应用的机器学习和边缘计算;显示驱动器、触摸感应;触觉显示器;用于 AR/VR 的交互式显示和传感技术。存储器:用于独立和嵌入式应用的静态、动态和非易失性存储器;存储器/SSD 控制器;用于存储器的高带宽 I/O 接口;基于相变、磁性、自旋转移扭矩、铁电和电阻材料的存储器;阵列架构和电路,以改善低压操作、降低功耗、可靠性、性能改进和容错能力;内存子系统内的应用特定电路增强、用于 AI 或其他应用的内存计算或近内存计算宏。电源管理:电源管理、电源输送和控制电路;使用电感、电容、和混合技术;LDO /线性稳压器;栅极驱动器;宽带隙(GaN / SiC);隔离和无线电源转换器;包络电源调制器;能量收集电路和系统;适用于汽车和其他恶劣环境的强大电源管理电路;LED驱动器。射频电路和无线系统**:用于接收器、发射器、频率合成器、射频滤波器、收发器、SoC和包含多个芯片的无线 SiP 的射频、毫米波和 THz 频率的完整解决方案和构建模块。创新电路、系统、设计技术、异构封装解决方案等,适用于既定的无线标准以及未来系统或新应用,例如传感、雷达和成像,以及提高频谱和能源效率的应用。安全:展示加密加速器的芯片(例如加密、轻量级加密、后量子加密、隐私保护计算、区块链)、智能卡安全、可信/机密计算、安全电路(例如 PUF、TRNG、侧信道和故障攻击对策、用于攻击检测和预防的电路和传感器)、资源受限系统的安全性、安全微处理器、安全存储器、模拟/混合信号电路安全(例如安全 ADC/DAC、RF、传感器)、安全供应链(例如硬件木马对策、可信微电子)、新兴技术的安全性以及用于逻辑/物理级安全的核心电路级技术。技术方向:集成光子学、硅电子-光子学集成等各个领域的新兴和新型 IC、系统和设备解决方案;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。RF 电路和无线系统**:用于接收器、发射器、频率合成器、RF 滤波器、收发器、SoC 和包含多个芯片组的无线 SiP 的 RF、毫米波和 THz 频率的完整解决方案和构建模块。创新电路、系统、设计技术、异构封装解决方案等,适用于既定的无线标准以及未来系统或新应用,例如传感、雷达和成像,以及那些可提高频谱和能源效率的应用。安全:展示加密加速器的芯片(例如加密、轻量级加密、后量子加密、隐私保护计算、区块链)、智能卡安全、可信/机密计算、安全电路(例如 PUF、TRNG、侧信道和故障攻击对策、用于攻击检测和预防的电路和传感器)、资源受限系统的安全性、安全微处理器、安全存储器、模拟/混合信号电路安全(例如安全 ADC/DAC、RF、传感器)、安全供应链(例如硬件木马对策、可信微电子)、新兴技术的安全性以及用于逻辑/物理级安全的核心电路级技术。技术方向:集成光子学、硅电子-光子学集成等各个领域的新兴和新型 IC、系统和设备解决方案;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。RF 电路和无线系统**:用于接收器、发射器、频率合成器、RF 滤波器、收发器、SoC 和包含多个芯片组的无线 SiP 的 RF、毫米波和 THz 频率的完整解决方案和构建模块。创新电路、系统、设计技术、异构封装解决方案等,适用于既定的无线标准以及未来系统或新应用,例如传感、雷达和成像,以及那些可提高频谱和能源效率的应用。安全:展示加密加速器的芯片(例如加密、轻量级加密、后量子加密、隐私保护计算、区块链)、智能卡安全、可信/机密计算、安全电路(例如 PUF、TRNG、侧信道和故障攻击对策、用于攻击检测和预防的电路和传感器)、资源受限系统的安全性、安全微处理器、安全存储器、模拟/混合信号电路安全(例如安全 ADC/DAC、RF、传感器)、安全供应链(例如硬件木马对策、可信微电子)、新兴技术的安全性以及用于逻辑/物理级安全的核心电路级技术。技术方向:集成光子学、硅电子-光子学集成等各个领域的新兴和新型 IC、系统和设备解决方案;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。以及提高频谱和能源效率的芯片。安全:展示加密加速器的芯片(例如加密、轻量级加密、后量子加密、隐私保护计算、区块链)、智能卡安全、可信/机密计算、安全电路(例如 PUF、TRNG、侧信道和故障攻击对策、用于攻击检测和预防的电路和传感器)、资源受限系统的安全性、安全微处理器、安全存储器、模拟/混合信号电路安全(例如安全 ADC/DAC、RF、传感器)、安全供应链(例如硬件木马对策、可信微电子)、新兴技术的安全性以及用于逻辑/物理级安全的核心电路级技术。技术方向:集成光子学、硅电子-光子学集成等各个领域的新兴和新型 IC、系统和设备解决方案;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。以及提高频谱和能源效率的芯片。安全:展示加密加速器的芯片(例如加密、轻量级加密、后量子加密、隐私保护计算、区块链)、智能卡安全、可信/机密计算、安全电路(例如 PUF、TRNG、侧信道和故障攻击对策、用于攻击检测和预防的电路和传感器)、资源受限系统的安全性、安全微处理器、安全存储器、模拟/混合信号电路安全(例如安全 ADC/DAC、RF、传感器)、安全供应链(例如硬件木马对策、可信微电子)、新兴技术的安全性以及用于逻辑/物理级安全的核心电路级技术。技术方向:集成光子学、硅电子-光子学集成等各个领域的新兴和新型 IC、系统和设备解决方案;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。硅电子-光子集成;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。硅电子-光子集成;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。