Loading...
机构名称:
¥ 1.0

实现量子计算的主要障碍 [1] 是处理量子误差。从环境中分离出一点量子信息已经够具挑战性的了;然而,为了实现一台有用的量子计算机,必须维持数千个纠缠量子比特的相干性。拓扑量子比特的用途在于它们内置了容错能力,这是由于任意子和边界模式之间的空间分离 [2]。马约拉纳零模式 [3-5] 是 p 波超导纳米线的端模式,是拓扑量子计算中最有前途的方向之一 [4,6-14]。这些马约拉纳端模式可以非局部地存储信息,并且可以编织起来执行受拓扑保护的逻辑门 [15-22]。尽管拓扑量子比特具有一定程度的防错能力,但它们仍然需要纠错才能完全实现为计算量子比特。完美的马约拉纳量子比特将具有无限长,并保持在零温度下。非零温度会导致有限的准粒子密度,从而导致量子比特出现错误。存在诸如环面码 [ 2 ]、表面码 [ 23 – 26 ] 和颜色码 [ 27 – 29 ] 之类的纠错码,它们可以在马约拉纳量子比特上实现 [ 30 – 37 ] 或平面码 [ 38 , 39 ] 等其他方案。然而,这些纠错方案需要大量开销,需要大量冗余量子比特来捕获和纠正错误。正如 Kitaev 指出的那样 [ 2 ],物质的任何拓扑相都可以识别为纠错码。在这一脉络中,我们要问,由马约拉纳纳米线链构建的一维 (1D) 费米子拓扑相 [40, 41] 是否可以与“费米子宇称保护的纠错码”联系起来。只要费米子宇称守恒,这样的链就可以防止量子误差,而且只需要一行物理量子比特,而不是一个表面。在本文中,我们展示了如何使用马约拉纳纳米线链来显著提高量子比特的寿命,因为马约拉纳量子比特中存在不同错误类型的层次结构。由于观察到的密度出乎意料的高

马约拉纳量子比特的一维纠错码

马约拉纳量子比特的一维纠错码PDF文件第1页

马约拉纳量子比特的一维纠错码PDF文件第2页

马约拉纳量子比特的一维纠错码PDF文件第3页

马约拉纳量子比特的一维纠错码PDF文件第4页

马约拉纳量子比特的一维纠错码PDF文件第5页

相关文件推荐

2021 年
¥1.0
2008 年
¥1.0