Loading...
机构名称:
¥ 1.0

量子纠错(QEC)这一学科的发展已有二十年,比量子计算本身的发展稍短一些。QEC 是量子计算中最关键的部分,因为它确保计算的可靠性,否则计算设备的输出就是垃圾。因此,每个量子计算机科学家都必须了解 QEC 和容错量子计算的框架。最开始的想法是编码,它也是所有经典通信、计算、密码学和相关领域的核心。编码可用于防范噪音或敌人。编码是指使用冗余来增强信息对噪音(错误)的鲁棒性的过程。例如,我们可以将 0 编码为一串 0,将 1 编码为一串 1,这样几个位的翻转就不会影响我们编码的信息。信息处理以编码的方式进行:首先编码,然后执行所需的操作,然后解码,最后读出所需的结果。此外,编码也发生在自然物理系统中:宏观可观测量被编码在统计系统的微观细节中,物体的内部体积属性可以编码在其边界中,等等。好的编码往往与有吸引力的物理学有关,而找到好的编码当然也需要技巧性的工作。

量子纠错码

量子纠错码PDF文件第1页

量子纠错码PDF文件第2页

量子纠错码PDF文件第3页

量子纠错码PDF文件第4页

量子纠错码PDF文件第5页

相关文件推荐

2023 年
¥6.0
2025 年
¥1.0
2021 年
¥1.0
2023 年
¥28.0
2022 年
¥1.0
2021 年
¥1.0
2020 年
¥4.0
1900 年
¥1.0
2024 年
¥1.0
2024 年
¥4.0
2024 年
¥28.0
2025 年
¥1.0
2020 年
¥1.0
2020 年
¥3.0
2020 年
¥8.0
2025 年
¥1.0
2023 年
¥1.0
2024 年
¥4.0
2023 年
¥6.0
2021 年
¥1.0