Loading...
机构名称:
¥ 2.0

使得它渐近于信道容量。我们注意到,在许多情况下量子信道容量是未知的,但是任何特定方案都会产生容量的下限。假设通信方在物理上是分开的,但他们可能可以使用其他资源,这些资源可能包括访问经典通信信道、预共享随机性和预共享纠缠。在这里,我们考虑在量子纠错码(QECC)的设计中使用纠缠来提高其通信速率或纠错能力。正如文献中常见的那样,我们关注通信本身,即,我们不包括共享最大纠缠态的过程。同时,必须记住,纠缠是一种不是免费的额外资源。例如,在 [1] 中已经讨论了在有噪声的量子信道上共享最大纠缠态与量子纠错之间的关系。本介绍部分的其余部分介绍了纠缠辅助量子纠错码 (EAQECC) 的一般框架和文献中基于经典纠错码的两种构造。此外,我们总结了主要结果。第 2 节讨论了三种线性代数方法,它们从经典代码开始,并产生具有不同参数的 EAQECC。第 3 节讨论了 EAQECC 参数的上限。随后在第 4 节中将它们集体用作优度度量,以激励我们的计算过程和结果。第 5 节结束语后的表格中列出了所得量子位和量子三元组 EAQECC 的参数。

构建需要量子纠错码......

构建需要量子纠错码......PDF文件第1页

构建需要量子纠错码......PDF文件第2页

构建需要量子纠错码......PDF文件第3页

构建需要量子纠错码......PDF文件第4页

构建需要量子纠错码......PDF文件第5页

相关文件推荐

2021 年
¥1.0
2023 年
¥3.0
2024 年
¥4.0