起初,量子纠错理论只是量子信息和量子计算领域的一个小领域。物理学家们主要对纠缠的抽象概念和与热力学的一些联系感兴趣。量子纠错的发展非常缓慢,直到 Schor 提出因式分解算法后才开始成为边缘话题。因式分解算法表明,量子计算机可以在多项式时间内分解数字,而传统计算机则需要指数时间。然而,即使有了这个结果,当时的物理学家也不相信量子计算会成为可能,因为相干量子态极其脆弱,因此建立一个大规模、可控、误差率低的量子系统是一种幻想。1995 年初,有人提出了一些能够纠正量子数据的代码。这是量子计算早期的重大发展之一,也是让物理学界相信量子计算是可能的起点。通过比较经典计算机和量子计算机的错误率,很容易理解量子纠错的重要性。经典计算机的平均错误率为 10 − 18 ,而当今最好的量子计算机的错误率为 10 − 4 。实际上,几乎无法想象它们的错误率会超过 10 − 7 。换句话说,在量子计算中,除非我们能够进行纠错,否则我们将无法进行任何相关计算。
让我们退一步考虑最简单的经典纠错码——重复码。假设发送者想要向接收者传输单比特消息 0 或 1。但是,连接它们的通信信道很嘈杂,偶尔会翻转比特值。要使用重复码传输 0,发送者需要传输三个零:000;要传输 1,需要传输三个 1:111。原始传输的嘈杂版本被传送给接收者,其中部分(甚至全部)比特已被翻转为相反的值。接收者的任务是确定发送者传输了什么消息。假设比特翻转只是偶尔发生,那么接收者可以合理地假设发送者的预期消息是在嘈杂的接收版本中最常出现的比特值。这称为多数表决解码。整个过程确保即使传输中有一个错误,预期消息也能被正确接收。假设错误独立发生在传输的比特上
起初,量子纠错理论只是量子信息和量子计算领域的一个小领域。物理学家们主要对纠缠的抽象概念和与热力学的一些联系感兴趣。量子纠错的发展非常缓慢,直到 Schor 提出因式分解算法后才开始成为边缘话题。因式分解算法表明,量子计算机可以在多项式时间内分解数字,而传统计算机则需要指数时间。然而,即使有了这个结果,当时的物理学家也不相信量子计算会成为可能,因为相干量子态极其脆弱,因此建立一个大规模、可控、误差率低的量子系统是一种幻想。1995 年初,有人提出了一些能够纠正量子数据的代码。这是量子计算早期的重大发展之一,也是让物理学界相信量子计算是可能的起点。通过比较经典计算机和量子计算机的错误率,很容易理解量子纠错的重要性。经典计算机的平均错误率为 10 − 18 ,而当今最好的量子计算机的错误率为 10 − 4 。实际上,几乎无法想象它们的错误率会超过 10 − 7 。换句话说,在量子计算中,除非我们能够进行纠错,否则我们将无法进行任何相关计算。
量子纠错码 (QECC) 是实现量子计算潜力的关键组件。与经典纠错码 (ECC) 一样,QECC 通过将量子逻辑信息分布在冗余物理量子比特上,从而可以检测和纠正错误,从而能够降低错误率。在这项工作中,我们高效地训练了新型端到端深度量子错误解码器。我们通过增强综合征解码来解决量子测量崩溃问题,以预测系统噪声的初始估计值,然后通过深度神经网络对其进行迭代细化。通过可微分目标直接优化在有限域上计算出的逻辑错误率,从而能够在代码施加的约束下实现高效解码。最后,通过高效解码重复综合征采样,我们的架构得到扩展,以支持有故障的综合征测量。所提出的方法展示了神经解码器用于 QECC 的强大功能,它实现了最先进的精度,对于小距离拓扑码,其性能优于现有的端到端神经和经典解码器,而后者通常在计算上是无法实现的。
摘要 — 在当前的嘈杂中尺度量子 (NISQ) 量子计算时代,量子比特技术容易出现缺陷,从而导致各种错误,例如门错误、退相干/失相、测量错误、泄漏和串扰。这些错误对在 NISQ 设备中实现无错误计算提出了挑战。针对此问题提出的解决方案是量子纠错 (QEC),旨在通过三步过程纠正损坏的量子比特状态:(i) 检测:识别错误的存在,(ii) 解码:精确定位受影响量子比特的位置,以及 (iii) 校正:将故障量子比特恢复到其原始状态。QEC 是一个不断扩展的研究领域,涵盖了复杂的概念。在本文中,我们旨在全面回顾量子纠错的历史背景、现状和未来前景,以满足对量子物理及其相关数学概念不太熟悉的计算机科学家的需求。在本研究中,我们 (a) 解释 QEC 的基本原理并探索用于纠正量子比特错误的现有量子纠错码 (QECC),(b) 探索这些 QECC 在实施和纠错质量方面的实用性,以及 (c) 强调在当前 NISQ 计算机环境下实施 QEC 所面临的挑战。索引术语 — 量子纠错、量子计算、纠错码
在第 1 章中,我们看到开放量子系统可以与环境相互作用,并且这种耦合可以将纯态转变为混合态。此过程将对任何量子计算产生不利影响,因为它可以减轻或破坏干扰效应,而干扰效应对于区分量子计算机和传统计算机至关重要。克服这种影响的问题称为退相干问题。从历史上看,克服退相干的问题被认为是构建量子计算机的主要障碍。然而,人们发现,在适当的条件下,退相干问题是可以克服的。实现这一目标的主要思想是通过量子误差校正 (QEC) 理论。在本章中,我们将介绍如何通过 QEC 方法克服退相干问题。值得注意的是,本介绍的范围并不全面,并且仅关注 QEC 的基础知识,而没有参考第 5 章中介绍的容错量子计算的概念。量子误差校正应该被视为这个更大的容错量子计算理论中的一个(主要)工具。