一旦量子计算机达到一定的性能水平,它们就有望打破传统的公钥密码学。因此,人们一直在努力对后量子密码学 (PQC) 进行标准化,以抵御量子计算机带来的攻击。1 然而,考虑到密码学在企业 IT 中的广泛使用,从传统公钥密码学过渡到 PQC 并不是一个临时的替代。事实上,自 1976 年 Diffie 和 Hellman 在论文 [ 1 ]《密码学的新方向》中做出开创性工作以来,我们从未经历过公钥密码学的全面替代。Rose 等人 [ 2 ] 探讨了这一转变所涉及的复杂性和战略前提,声称许多信息系统如果不对其基础设施进行大量且耗时的修改,就无法采用新的密码算法或标准。Ott 等人 [ 3 ] 指出文献中缺乏相关研究,并质疑应用密码学和系统研究界是否充分理解并提供高效安全的密码过渡框架。认识到迁移到 PQC 的复杂性,白宫发布了《国家安全备忘录》(NSM-10)2,指示美国国家标准与技术研究所(NIST)启动“迁移到 PQC”项目 3,邀请行业专家为迁移到 PQC 开发最佳实践和工具。NSM-10 强调了加密敏捷性在迁移工作中的重要性,旨在缩短过渡时间并促进未来加密标准的无缝更新。根据美国国土安全部的说法,加密敏捷性或加密敏捷性是一种设计功能,允许敏捷更新新的加密算法和标准,而无需修改或替换周围的基础设施。4
证书机构是一个可信赖的第三方,用于通过为所有不同实体的公共密钥证书(数字证书)发出公共密钥证书(数字证书)来验证参与消息交换的实体。该证书通常包含上述实体的公钥,有关配对私钥所有者的其他信息,一个时间窗口,指示证书有效的时间以及CA自己的数字签名。每个用户都必须与它建立信任关系,因为必须使用CA的私钥签名每个有效的证书。但是,当局还必须发布某种列表,以跟踪因折衷或取消而被撤销的证书。注册机构的作用是跟踪新用户并验证其对CA [3] [4]的身份。通过使用上述CA的证书,可以确保用户正在与正确的方通信。
引言 密码系统是将纯文本转换为密文的系统。这种转换基于加密和解密过程,使用多种算法使其更容易。这个系统有 4000 年的历史。密码学的首次记录使用可以追溯到公元前 1900 年左右。密码学的不断发展为我们提供了安全的通信、货币交易、电子邮件和任何在线服务。它保证数据的安全,有时在第三方面前隐藏它们的实际地址,在未来,不仅是密码学,事实上整个密码系统都将因其在技术史上的巨大贡献而引人注目。 密码系统是密码技术的一种实现。它基本上是一对算法;一个用于加密数据,另一个用于解密。在讨论之前,我们需要知道什么是密码。实际上,密码是一种算法,通过加密过程将纯文本应用于目标密文。密码学不过是一门编写和缝制代码的艺术。密码学可以分为两部分;密码学和密码分析。图 1 描述了密码学的不同部分。 II 密码学 在密码学中,密码学是网络安全的一个专业领域。它是一门创建代码的艺术。我们现在将讨论密码学的简史。 古代密码: ▪ 至少有 4000 年的历史。 ▪ 公元前 1900 年,一位埃及抄写员使用了一些不寻常的象形文字。
塞拉利昂弗里敦理工学院最近举办的教师培训研讨会展示了 CODE 的 QTL 框架是如何实施的。CODE 的识字教育和性别专家 Julie Donohue-Kpolugbo 分享道:“研讨会重点关注三个关键领域:培养教师的知识和技能,以应对提高学生识字率的当前挑战,帮助他们在真实的课堂环境中应用新技术,并鼓励反思性实践以改进和提高他们的教学。我们正在超越一刀切的方法,推广量身定制的教学方法,培养一种持续成长和进步的文化。”
序言是这些讲座中涵盖的加密协议的一个激励示例,以荷兰的传统为“ Sinterklaaslootjes trekken”,国际上被称为“秘密圣诞老人”,其中一群人匿名交换了小礼物,通常伴随着诗歌,伴随着相当多的押韵couplets long。许多网站可用来帮助人们通过互联网进行此类图纸;参见,例如,lootjestrekken.nl和elfster.com上的“秘密圣诞老人”服务。有趣的问题是如何安全地执行此操作!也就是说,不信任网站或程序提供此服务,但保证(a)确实执行了随机绘图,对应于没有固定点的随机置换,并且(b)使每个参与者什么也没学,除了他或她是秘密的圣诞老人。这种隐私保护密码协议的更严重的应用正在许多地方出现。例如,在过去的二十年中,已经进行了许多使用高级密码学的电子选举。其他应用程序涉及使用匿名现金,匿名凭证,团体签名,安全拍卖等,一直到(安全)多派对计算。为此,我们研究了超越我们喜欢称为加密1.0的加密技术。基本上,加密1.0涉及通信,存储和检索过程中数据的加密和认证。Commen目标是防止恶意局外人,例如攻击存储或通信媒体。整个治疗将在各个阶段进行入门却精确。众所周知的加密1.0原始词是对称的(se-cret键),例如流密码,块密码和消息身份验证代码;不对称(公钥)原始词,例如公钥加密,数字签名和密钥交换协议;而且,无钥匙的原始词,例如加密哈希功能。另一方面,Crypto 2.0还旨在保护恶意内部人士,也就是针对其他人正在运行的协议的攻击。因此,加密2.0涉及使用加密数据,部分信息发布数据以及隐藏数据所有者的身份或与它们的任何链接的计算。众所周知的加密2.0原始素是同态加密,秘密共享,遗忘转移,盲目签名,零知识证明和多方计算,在这些讲义中,这些都将在一定程度上对其进行处理。假定对基本密码学的熟悉。我们专注于加密协议的不对称技术,还考虑了各种构造的安全证明。零知识证明的主题起着核心作用。尤其是,详细将σ提议作为所谓的模拟范式的主要示例,该模拟范式构成了许多现代密码学的基础。这些讲义的第一个和主要版本是在2003年12月至2004年3月的时期编写的。多年来,所有的学生和读者都直接和间接地提供了他们的反馈,这最终帮助了本文的第一个完整版本。浆果Schoenmakers