独立于设备的量子密钥分发 (DIQKD) 提供了最强大的安全密钥交换形式,仅使用设备的输入输出统计数据即可实现信息论安全性。尽管 DIQKD 的基本安全原理现已得到充分理解,但为高级 DIQKD 协议推导出可靠且强大的安全界限仍然是一项技术挑战,这些界限要超越基于违反 CHSH 不等式而得出的先前结果。在这项工作中,我们提出了一个基于半有限规划的框架,该框架为使用不受信任设备的任何 QKD 协议的渐近密钥速率提供可靠的下限。具体而言,我们的方法原则上可用于基于完整输入输出概率分布或任何贝尔不等式选择来为任何 DIQKD 协议找到可实现的密钥速率。我们的方法还扩展到其他 DI 加密任务。
如果未来的量子计算机能够破坏加密系统,那么国家和经济安全将受到重大影响。破解密码意味着对手可以进行大规模金融欺诈、中断关键基础设施服务并获取最机密和最敏感的国家机密。除了量子计算机对未来的影响之外,它还对当今的系统构成威胁。虽然量子计算机的科学成熟度尚未达到威胁密码学的程度,但对手有资源拦截和收集加密数据,一旦拥有量子计算机就可以解密。这对政府来说尤其重要,因为某些信息在未来几十年内仍是敏感信息。它的泄露可能会威胁国家机密和未来的作战能力。
随着量子计算机的日新月异,对隐私构成威胁,大整数分解和离散对数等数学难题将通过 Shor 算法被破解。这将使广泛使用的密码系统过时。由于量子计算的进步,后量子密码学最近大受欢迎。因此,2016 年,美国国家标准与技术研究所 (NIST) 启动了一项标准化流程,以标准化和选择能够抵御量子计算机攻击的加密算法和方案,称为后量子密码学。标准化过程始于 69 份密钥封装机制 (KEM) 和数字签名 (DS) 的提交。4 年后,该流程已进入第三轮(也是最后一轮),有 7 个最终候选方案,其中 4 个是 KEM(CRYSTALS-Kyber、SABER、NTRU、Classic McEliece),其余 3 个提交是 DS(CRYSTALS-Dilithium、FALCON、Rainbow)。标准化过程大部分向公众开放,NIST 要求研究人员从理论和实施的角度研究提交的内容,以确定所提议候选方案的优点和缺点。
为执行隐私权的政府失败,密码学可以用作个人的隐私技术,以从包括自己的政府在内的任何对手来执行对自己秘密的控制。这种事务状况,其中隐私受到私人(通常是公司行为者)和控制政府的威胁,可以被认为是资本主义中的一种突变(Zuboff,2018年)。我们想将这样的概念转到其头上。如密码学历史所示,保密是模范状态的信息组织的建立。这种反演使我们可以考虑政府保密的增加,对自己人口的大规模监视是一种历史的连续性,而不是对国家历史的畸变。它还使我们能够重新考虑密码学从国家到个人的传播,这是主权历史景观的转变,而不仅仅是针对某些关于隐私权和日益数字个人自我的法律障碍的防御态度。
缺勤和迟到或错过的作业,学生应在课程时间表中指定的时间范围内积极参与所有学习活动和评估。未能参与或提交指定的工作可能会影响您实现可能影响课程成绩的课程目标的能力。缺席或缺乏参与,被原谅或无故,不会减轻学生的任何课程要求。定期参与学习活动和遵守分配/测试日期是学生的责任。请遵循适当的大学政策要求宗教习俗(http://www.asu.edu/aad/aad/manuals/acd/acd/acd/acd/acd/acd304-04.html),或适应因大学批准的活动而错过的任务(http://wwwwwwwww.asu.edu.eedu/anad/manual/ACD304.04.
J 10 2(10-2)mod 26 = 8 mod 26 = 8 8→H k 11 2(11-2)mod 26 = 9 mod 26 = 9 9→I n 14 2(14-2)mod 26 = 12 mod 26 = 12 mod 26 = 12 12→12 12→L G 7 2(7-2)mod 26 = 5 mod 26 = 5 mod 26 = 5 mod 26 = 5 5 5→E V 22 2(22-2-2)mod 26 = 20 20 20 20 20 20 20 20 20 20 20 2 26 = 20 20范= 21 21→U U 21 2(21-2)mod 26 = 19 mod 26 = 19 19→s o 15 2(15-2)mod 26 = 13 mod 26 = 13 mod 26 = 13 13→m g 7 2(7-2)mod 26 = 5 mod 26 = 5 mod 26 = 5 5→e g 7 2(7-2) mod 26 = 1 1→a V 22 2(22-2)mod 26 = 20 mod 26 = 20 20→t v 22 2(22-2)mod 26 = 20 mod 26 = 20 20→t y 25 2(25-2)mod 26 = 23 mod 26 = 23 23→w q 17 2(17-2)
路易斯·德·冈萨古(Louis de Gonzague),诺斯公爵(Duk of Nevers)在法国早期的现代历史上发挥了重要作用,尤其是因为他在法国宗教战争期间的政治和外交活动(Boltanski,2006年)。此外,他是16世纪过去二十年来加密实践中的主要参与者之一:数十个手稿(现在保留在BNF)包含了诺斯公爵(Nevers of Nevers)或其中之一的加密信件(BNF,fr。3995)甚至包含68个密码桌。While the letters of the Duke of Nevers are well known to historians (Boltanski, 2006; Le Person, 2002; Le Roux, 2000; Wolfe, 1988), and the majority of these letters has been deciphered as soon as they were received by the recipient (see for instance the interlinear decipherment in the letter from Henri IV to the Duke of Nevers (19 April 1591) at BnF, fr.3615,fol。52),亨利四世给《诺斯公爵》写的一封信在这个语料库中脱颖而出。不仅没有这封信被解密(或者至少没有与信件一起保存其原始解密),而且最重要的是,密码不匹配法国国王的另一个加密信件中使用的密码。
❖PKI涉及受信任的第三方的参与,他们验证了希望通过签发数字证书的当事方的身份。❖数字证书 / PKI证书包含有关钥匙持有人,公共密钥,到期日期以及发行其发行的证书授权的签名的信息❖值得信赖的第三方,称为注册机构,同时验证了一个人或实体的认证,并将其授予另一个机构,以指示另一个机构,以指导另一个机构。 钥匙。❖此证书(以及其中包含的公共密钥)随后可用于证明身份并实现与其他方的安全交易。
21 de Mai。 de 2024 - 3。 0。 0。 3。 公开选修课-II。 3。 0。 0。 3。 加密和网络安全实验室。 0。 0。 2。 1。 编译器设计实验室。 0。 0。 2。 1。 项目阶段-I。 0。 0。 6。 3。21 de Mai。de 2024 - 3。0。0。3。公开选修课-II。3。0。0。3。加密和网络安全实验室。0。0。2。1。编译器设计实验室。0。0。2。1。项目阶段-I。0。0。6。3。
