使用一种测试方法来鉴定微生物。基于培养的测试需要对培养基,孵化和观察微生物的实际生长进行接种。根据确定的生物,基于培养的测试可能需要几天到几周才能完成最终报告。相比之下,基于非培养的测试方法通常提供更快的结果,这可以有助于早期诊断和调整抗菌治疗。基于非文化的测试的例子包括但不限于PCR(聚合酶链反应)和ELISA(酶联免疫吸附测定)。
HAILO-10H独特,功能强大且可扩展的结构驱动的数据流架构利用了神经网络的核心属性。它使Edge设备能够比传统解决方案更有效,有效地更加有效地运行深度学习应用程序,同时显着降低了成本。
量子密钥分发 (QKD) 标志着安全通信领域的一大飞跃,它使用量子力学来建立高度安全的加密密钥。与依赖复杂数学问题的传统加密方法不同,QKD 通过量子粒子的物理属性(例如叠加和纠缠)来保证安全性。QKD 的主要优势之一是其内置检测传输过程中任何未经授权的拦截密钥企图的能力。窃听者的任何干扰都会改变粒子的量子态,暴露拦截企图并保护通信免受损害。本研究重点关注两个重要且经过充分研究的 QKD 协议:BB84 和 E91。BB84 协议于 1984 年推出,它传输不同量子态的单个量子比特(量子位)来生成密钥。该协议的安全性通过以下原理得到加强:测量量子系统不可避免地会干扰它,从而可以检测到潜在的窃听。同时,1991 年开发的 E91 协议使用量子纠缠,这是一种粒子即使相隔很远也能保持连接的现象。E91 协议中的纠缠态可以创建共享密钥,同时确保通过破坏量子相关性来发现任何篡改行为。该项目旨在探索和模拟软件中的 BB84 和 E91 协议,以研究这些密钥生成方法如何执行并响应模拟攻击。通过专注于计算模拟而不是物理硬件,这项研究提供了一种实用且经济高效的方法来深入研究 QKD 的工作原理。使用 ProjectQ 等量子计算工具并集成加密软件,该研究涉及密钥生成和传输过程。将测试有窃听和无窃听的场景,以分析这些协议检测未经授权的监控和维持安全通信的能力。这项工作将提供有价值的见解,了解这些量子协议如何有效地抵御新兴威胁以及它们在安全通信中的未来作用。
组件详细信息 数量 样品来源(CDN,截至 2024 年 11 月) 激光源 520nm 绿色激光二极管(II 类激光) 1 DigiKey VLM-520-03LPT-ND 激光电源 6V 电池(4 节 AA 电池,带电池座) 1 DigiKey 1528-830-ND 开关按钮 带 Off-Mom 功能的按钮 1 DigiKey PR144C1900 Gator-Clip 引线 3-7 DigiKey 2407(10 件装) 太阳能电池板 非晶太阳能电池,0-5V,20.7 uW 2 DigiKey AM-1819CA 分束器 50/50 分束器,非偏振 1 ThorLabs EBS1 半波片 λ /2 薄膜,适用于 520nm 光,21 毫米见方 2 Edmund Optics 88256(片) 四分之一波片 λ /4 520nm 光的薄膜,21 毫米见方 1 Edmund Optics 88253(片) 偏振器 最好使用厚材料,21 毫米见方 3 PolarizationDotCom PF030(片) 绿色滤光片 铬绿色滤光片,21 毫米见方 2 生产用品 R389(片) 参考偏振器 偏振滑块,任何有标签的都可以 1-3 Rainbow Symphony 04601 面包板 小面包板 1 DigiKey BB-32650-R Arduino Uno Rev3 经过测试,请参阅固件安装提示 1 DigiKey A000066 USB 线 USB-B 转 USB-A,公对公 1 DigiKey SC-2ABE003F 9V 交流适配器或电池插头
Palo Alto Networks NGFWS使用成千上万的客户部署生成的智能检测已知和未知威胁,包括在加密流量中。这意味着它们会降低风险并防止广泛的攻击。例如,它们使用户能够根据业务需求访问数据和应用程序。随着流量被解密和检查,流量与特定用户相关。该信息以及流量,应用程序和相关内容的上下文用于根据定义的安全策略做出交付决策。政策允许管理员选择解密的流量并保持安全和合规性,从而避免了人力资源和财务运营以维持法规合规性。合并后,这些功能允许企业不牺牲整体企业安全而专注于业务运营。
随着无线网络日益成为现代通信基础设施不可或缺的一部分,对保护敏感信息的强大安全机制的需求从未如此迫切。量子密钥分发 (QKD) 提供了一种革命性的通信安全方法,它利用量子力学原理确保加密密钥在理论上不可破解。本研究全面回顾了无线网络环境下 QKD 技术的现状,利用二级数据源分析了最近的进展、实施和挑战。本文首先概述了 QKD 的基本原理及其相对于传统加密方法的优势。然后,它研究了 QKD 协议的最新发展及其对无线环境的适应性,重点介绍了成功的案例研究和实验。详细讨论了关键挑战,包括技术限制、与现有网络基础设施的集成障碍以及成本考虑。本评论还探讨了新兴趋势和创新,例如混合 QKD 系统和基于卫星的实施,这些趋势和创新有望扩大 QKD 在无线网络中的适用性和可行性。最后,该研究概述了未来的前景和潜在的研究方向,强调需要跨学科合作来克服现有的局限性,并充分发挥 QKD 在增强无线网络安全性方面的潜力。
•SCE5为机密性提供了硬件加速对称加密。更新的SCE5_B使用增强的安全密钥处理,利用注射的MCU唯一Huk。•SCE7为完整性和身份验证添加了不对称的加密和高级哈希功能。•SCE9通过利用注射的MCU-INIQUE HUK来扩展SCE7,用于安全键处理,并将RSA支持提高到RSA-4K。•RSIP通过添加EDDSA,ECC SECP521R1,SHA384和SHA512等高级加密算法来扩展SCE9。RA安全引擎使用硬件唯一密钥(HUK)来保护应用程序密钥的存储。对于RSIP-E51A和SCE9,MCU-INIQUE HUK是256位随机键。对于SCE5_B,HUK是一个128位随机键。这些武器在Renesas工厂注入,并且从未在安全引擎外面暴露。使用MCU唯一的键包装机制以包装格式存储此键,确保
LS-MoM-12 量子材料中局部轨道的直接成像,Martin Sundermann,德国马克斯普朗克固体化学物理研究所;H. Yavas,德国电子同步加速器 PETRA III,德国 DESY;P. Dolmantas、C. Chang,德国马克斯普朗克固体化学物理研究所;H. Gretarsson,德国电子同步加速器 PETRA III,德国 DESY;A. Komarek,德国马克斯普朗克固体化学物理研究所;A. Severing,德国科隆大学;M. Haverkort,德国海德堡大学;L. Tjeng,德国马克斯普朗克固体化学物理研究所
摘要。在本文中,我们提出了可验证的秘密共享(VSS)方案,以确保同步模型中的任何诚实多数,并且仅使用对称键的加密工具,因此具有明显的后量词安全性。Compared to the state-of-the-art scheme with these features (Atapoor et al., Asiacrypt ‘23), our main improve- ment lies on the complexity of the “optimistic” scenario where the dealer and all but a small number of receivers behave honestly in the sharing phase: in this case, the running time and download complexity (amount of information read) of each honest verifier is polylogarithmic and the total amount of broadcast information by the经销商是对数;在Atapoor等人的上述工作中,所有这些复杂性都是线性的。同时,我们就“悲观”案件的先前工作保留了这些复杂性,在这种情况下,经销商或O(n)接收者会积极作弊。新的VSS协议在多方计算中引起了人们的关注,在多方计算中,各方以经销商的身份运行一个VSS,例如分布式关键生成协议。在Boneh等人的模型中,我们的主要技术手柄是多项式低度的分布式零知识证明。(加密’19),如果说明(在这种情况下为证人多项式评估)分布在几个验证者之间,则每个验证者都知道一个评估。使用类似于星期五的折叠技术(Ben-Sasson等,ICALP '18),我们构建了这样的证明,每个验证者都会接收到聚类信息并在Polylogarithmictim中运行。