由于Shor表明量子计算机可能会破坏RSA和Di-Hellman Cryptosystems [13],这是日常使用最广泛的不对称方案,因此加密社区的重点是对合适的抗量子替代品的设计和分析。在对称密码学中,情况不同。Grover的算法[8]给出了二次加速,以详尽地搜索秘密键。从这个通用的结果中得出了民间传说的信念,即“将关键长度加倍足够”。的确,将密钥的长度加倍使量子攻击与格罗弗的搜索至少成本,在操作数量上,就像对原始密钥的经典详尽搜索一样。在本文中,我们重点介绍了对块密码K(用秘密键K实例化)对攻击者仅具有黑匣子访问的情况。
我们提出了一个用于量子多体模拟的开源张量网络python库。的核心是一种Abelian对称张量,以稀疏的块结构实现,该结构由密集的多维阵列后端的逻辑层管理。这是在矩阵prod-uct状态下运行的高级张量网络算法和预测的纠缠对状态的基础。诸如Pytorch之类的适当后端,可以直接访问自动分化(AD),以实现GPU和其他支持的加速器的成本功能梯度计算和执行。我们在具有无限投影纠缠状态的模拟中显示了库的表现,例如通过Image nime time Evolution通过AD找到基态,并模拟Hubbard模型的热状态。对于这些具有挑战性的示例,我们识别并量化了由对称调整器实现利用的数值优势来源。
摘要 - 在这项工作中,我们检查了不对称的沙普利谷(ASV),这是流行的Shap添加剂局部解释方法的变体。ASV提出了一种改善模型解释的方法,该解释结合了变量之间已知的因果关系,并且也被视为测试模型预测中不公平歧视的一种方法。在以前的文献中未探索,沙普利值中的放松对称性可能会对模型解释产生反直觉的后果。为了更好地理解该方法,我们首先展示了局部贡献如何与降低方差的全局贡献相对应。使用方差,我们演示了多种情况,其中ASV产生了违反直觉归因,可以说为根本原因分析产生错误的结果。第二,我们将广义添加剂模型(GAM)识别为ASV表现出理想属性的限制类。我们通过证明有关该方法的多个理论结果来支持我们的学位。最后,我们证明了在多个现实世界数据集上使用不对称归因,并使用有限的模型家族进行了使用梯度增强和深度学习模型的结果进行比较。索引术语 - 解释性,摇摆,因果关系
在阳米尔斯仪表上的欧几里得凯奇表面表面表面含有直接经验意义的仪表对称性组通常被认为是g des = g des = g i /g∞0,其中g i是一个具有边界的符号对称性和g∞0是其由构成理论构成的构成的构成的转化。这些群体分别被识别为渐近变化的仪表变换,以及渐近身份的量规变换。在Abelian案例中G = U(1)然后将其标识为全球仪表对称组,即u(1)本身。然而,在数学上还是概念上,这一说法的已知派生都是不精确的。我们针对阿贝里安和非亚伯仪理论严格得出了物理量规组。我们的主要新观点是,限制g i的要求不仅源于能量的有限,而要依赖于Yang-Mills理论的Lagrangian的要求,以在切实的捆绑包上定义以配置空间。此外,我们解释了为什么商恰好由每个同型类别的全球仪表组的副本组成,即使各种规范变换显然具有不同的渐近速率收敛速率。最后,我们在框架中考虑了Yang-Mills-Higgs理论,并表明渐近边界条件在不间断和破碎的相处有所不同。1
摘要。我们考虑域ω的s 2值图r n最小化了dirichlet能量的扰动,并在ω和水平惩罚上对∂Ω进行垂直惩罚。我们首先显示了使用庞加莱型不平等的物理参数在特定范围内的普遍常数配置的全球最小值。然后,我们证明任何能量最小化器将其值都带入球体s 2的固定半梅里德人,并将最小化器的唯一性推断为适当的对称组的作用。我们还证明了具有不同惩罚的最小化器的比较原则。最后,我们将这些结果应用于球上的问题,并显示最小化器的径向对称性和单调性。在尺寸n = 2中,我们的结果可以应用于列纤维液体中的列液晶和微磁能的Oseen-Frank能量。
1。引言心血管(CV)疾病(CVD)发病率和死亡率正在下降,但仍然是发病率和死亡率的主要原因[1]。防止CVD的最重要方法是鼓励健康的生活方式,尤其是戒烟和治疗高血压。直到21世纪初,降低动脉粥样硬化进展的药物治疗主要集中在降低胆固醇水平上。将动脉粥样硬化为炎症性疾病的范式转变导致了新疗法的发展。此外,越来越多的证据表明,他汀类药物是一类给CVD患者的降脂药物,也提供了多效性抗炎作用,这创造了一个机会来测试治疗炎症是否可以帮助预防心脏事件[2]。本文简要介绍了炎症的病理生理学,并将注意力集中在针对动脉粥样硬化和心肌梗塞(MI)不同炎症途径(MI)的疗法上。
混沌和许多研究该领域的思想已经渗透到大量科学领域,特别是那些依赖数学的领域。希望这能说明这些思想对化学和物理等领域的影响有多么深刻和强大。自然界似乎太复杂了,不可能在所有层面上都一直保持线性。引用爱因斯坦的话来说,自然界的确切定律不可能是线性的,也不可能从线性中推导出来。量子力学在形式上是线性的,被认为是理解自然界的基础系统[1-3]。这些看似相互矛盾的观点促使人们问量子力学是否也能涵盖非线性现象。这个问题与经典非线性现象的研究有关[4,5]。这让人们想知道,如果经典版本是混沌的,量子系统的行为会怎样。要理解量子力学中的混沌,需要对量子理论的基本结构进行更严格的表述[6,7]。要做到这一点,需要制定量子-经典对应关系,而目前,这种表述还缺乏。在经典力学中,如果存在一组 N 个运动常数 F ifg 并且它们对合,则具有 N 个自由度的哈密顿系统被定义为可积的,因此泊松括号满足 F i ;F j = 0,其中 i, j = 1,...,N。当系统可积时,运动被限制在 2 N 维相空间中不变的 N 环面上,因此是规则的。如果系统受到小的不可积项的扰动,则 Kolmogorov-Arnold-Moser (KAM) 定理指出其运动可能仍然限制在 N 环面上,但会发生变形。当此类扰动增加到某些环面被破坏的程度时,就会出现混沌,它们的行为用正的 Lyapunov 指数表示。研究量子混沌的尝试主要集中在经典不可积系统的量化上。由于前者原则上只是后者的极限情况,而且大多数现实量子系统没有经典对应物,因此后一种方法更一般、更自然。经典极限最常用的方法是使用埃伦费斯特定理,下面给出了三种研究经典极限的常用方法。薛定谔方法是开发一个波包,其时间演化遵循经典轨迹,因此坐标和动量期望值的时间演化不仅可以求解哈密顿方程,还可以求解薛定谔方程。狄拉克的方法是构造一个量子泊松括号,使经典力学和量子力学的基本结构一一对应。第三种方法是费曼路径积分形式,它通过对给定的初始和最终状态积分所有可能的路径,用经典概念来表达量子力学。可以根据量子力学的公理结构来回顾这个问题,量子动力学自由度的定义如下
基于物理的神经形态计算是当前数字技术的有前途的算法,因为其能量效率,并行性的潜力和较大的带宽。在各种体系结构中,复发性神经网络(RNN)特别适合以频度依赖性(例如音频和视频信号)处理数据[?]。但是,他们解决特定任务的监督培训通常是数据密集型的,需要调整网络的互发矩阵,这是硬件实现的挑战。储层计算(RC)提供了一个框架来通过简化训练过程来克服此问题,从本质上讲,将RNN未经训练以及在结合RNN节点的瞬时响应的输出层上使用简单的lin-1 eR-ear回归[??]。这些考虑因素通过使用七个技术平台(包括微电子学,旋转和光子学[??]。在后一类中,已经提出了各种插曲[? ]包括大规模的自由空间体系结构[???],光反馈体系结构[???]和光子集成电路[??]。这些物理系统已经在各种任务上证明了最先进的性能,包括非线性通道均衡,混乱的时间序列预测和语音识别[?]。],其中一个物理非线性反馈体系结构依赖于时间延迟储层(TDRC)方法[?
早在1946年,J。A. Wheeler提出了一个实验,以验证一对理论的预测,即在n灭nih灭时发出的两个量子,具有零相对角动量的正电子 - 电子对,彼此之间是正确的。该建议涉及对各种方位角上两个an灭光子散射的巧合测量。Pryce和Ward'以及Snyder,Pasternack和Hornbostel报告了详细的理论研究。 '当两个计数器彼此成直角时,预测的最大不对称比率是当相机的共同平面物与2个。85,以8 = 82'的散射角出现。bleuler和bradt4使用了两个末端窗口6-m计数器作为检测器,并观察到与该理论不一致的不对称比。尽管如此,与结果相关的误差范围是如此之大,以至于使理论和实验之间的详细比较变得相当不利。同时,汉娜(Hanna)进行了类似的实验,并进行了更多的E%CIENT计数器排列,发现观察到的不对称比率始终小于所预测的不对称比。因此,通过使用更多的E%CIENT探测器和更有利的条件来重新分配此问题,这似乎是非常需要的。最近开发的闪烁计数器已被证明是可靠且高度高的伽马射线检测器。随着这种提高的效率,大约是G-M计数器的十倍,重合计数率将增加一百倍。被使用。在我们的实验中,两个RCA 5819摄影管和两个蒽晶体1x1xs。用这些蒽晶体获得的歼灭辐射的效率为7%至8%,与计算值相比有利。几何布置在图中示意性1。正电子源Cu〜被Deuteron Bombard the激活在哥伦比亚回旋子的铜靶上。采用电镀方法将CU活性与其他