深层生成模型最近显示了解决复杂工程设计问题的成功,其中模型预测了解决指定为输入的设计要求的解决方案。ever,在对这些模型进行有效设计探索的对齐方面仍然存在挑战。对于许多设计问题,找到满足所有要求的解决方案是不可行的。在这种情况下,启动者更喜欢在这些要求方面获得一组最佳的帕累托最佳选择,但是生成模型的单程抽样可能不会产生有用的帕累托前沿。为了解决这一差距,我们将使用模拟微调生成模型来实现帕累托 - 前设计探索的新框架。首先,该框架采用了针对大型语言模型(LLM)开发的偏好一致性方法,并展示了用于微调工程设计生成模型时的第一个应用。这里的重要区别在于,我们使用模拟器代替人类来提供准确,可扩展的反馈。接下来,我们提出了Epsilon-Smplamping,灵感来自具有经典优化算法的帕托前期生成的Epsilon-约束方法,以使用精细的模型来构建高质量的Pareto前沿。我们的框架(称为e-Simft)被证明比现有的多目标比对方法产生更好的帕累托前沿。
脑电图 (EEG) 信号经常用于各种脑机接口 (BCI) 任务。虽然深度学习 (DL) 技术已经显示出良好的效果,但它们受到大量数据需求的阻碍。通过利用来自多个受试者的数据,迁移学习可以更有效地训练 DL 模型。欧几里得对齐 (EA) 是一种越来越受欢迎的技术,因为它易于使用、计算复杂度低并且与深度学习模型兼容。然而,很少有研究评估它对共享和单个 DL 模型训练性能的影响。在这项工作中,我们系统地评估了 EA 与 DL 结合对解码 BCI 信号的影响。我们使用 EA 用来自多个受试者的数据训练共享模型,并评估了它对新受试者的可迁移性。我们的实验结果表明,它将目标受试者的解码提高了 4.33%,并将收敛时间缩短了 70% 以上。我们还为每个受试者训练了单独的模型,以用作多数投票集成分类器。在此场景中,使用 EA 可将 3 模型集成准确率提高 3.71%。但是,与使用 EA 的共享模型相比,集成准确率降低了 3.62%。
动机:由于诸如长序列,大插入/缺失(跨越了几种100个核苷酸),大数量序列,序列差异和高计算复杂性,例如在二级结构预测的上下文中,因此全病毒基因组的多序列比对可能具有挑战性。标准比对方法通常会面临这些问题,尤其是在处理高度可变的序列或对选定子序列需要特定的系统发育分析时。我们提出了基于Python的命令行工具Anchorna,旨在在编码序列中识别保守区域或锚定。这些锚定定义分裂位置,指导复杂病毒基因组的比对,包括具有重要二级结构的那些。AnchORNA通过专注于这些关键的保守区域来提高全基因组对齐的准确性和效率。在设计培养在病毒家族中的底漆时,提出的方法特别有用。结果:AnchORNA引导的对准与3个对齐程序的结果进行了比较。利用55个代表性的Pestivirus基因组的数据集,AnchORNA确定了56个锚点,对于指导对齐过程至关重要。这些锚的合并导致了所有测试的对齐工具的显着改进,突出了Anchorna在增强对齐质量方面的有效性,尤其是在复杂的病毒基因组中。可用性:Anchorna可根据MIT许可在GitHub上的MIT许可证上,网址为https://github.com/rnajena/anchorna,并在Zenodo上存档。该软件包包含一个带有Pestivirus数据集的教程,并且与支持Python的所有平台兼容。
少量学习 (FSL) 是从少量训练示例中学习识别以前未见过的图像类别的任务。这是一项具有挑战性的任务,因为可用的示例可能不足以明确确定哪些视觉特征最能体现所考虑类别的特征。为了缓解这个问题,我们提出了一种额外考虑图像类别名称的方法。虽然之前的工作已经探索过类名的使用,但我们的方法在两个关键方面有所不同。首先,虽然之前的工作旨在直接从词嵌入中预测视觉原型,但我们发现通过分别处理视觉和基于文本的原型可以获得更好的结果。其次,我们提出了一种使用 BERT 语言模型学习类名嵌入的简单策略,我们发现该策略大大优于之前工作中使用的 GloVe 向量。此外,我们提出了一种处理这些向量高维性的策略,该策略受到跨语言词嵌入对齐模型的启发。我们对 miniImageNet、CUB 和 tieredImageNet 进行了实验,结果表明我们的方法能够持续提高基于度量的 FSL 的最新水平。
神经活动与行为相关变量之间的关系是神经科学研究的核心。当这种关系很强时,这种关系被称为神经表征。然而,越来越多的证据表明,某个区域的活动与相关的外部变量之间存在部分分离。虽然已经提出了许多解释,但缺乏外部变量和内部变量之间关系的理论框架。在这里,我们利用循环神经网络 (RNN) 从几何角度探索神经动力学和网络输出何时以及如何相关的问题。我们发现训练 RNN 可以导致两种动态状态:动态可以与产生输出变量的方向一致,也可以与它们倾斜。我们表明,训练前读出权重大小的选择可以作为状态之间的控制旋钮,类似于最近在前馈网络中的发现。这些状态在功能上是不同的。斜向网络更加异质,并抑制其输出方向上的噪声。此外,它们对沿输出方向的扰动更具鲁棒性。至关重要的是,出于动态稳定性考虑,倾斜状态特定于循环(而非前馈)网络。最后,我们表明,在神经记录中,可以分离出对齐或倾斜状态的趋势。总之,我们的结果为通过将网络动态与其输出相关联来解释神经活动开辟了新视角。
描述了K均值,层次结合和DBSCAN聚类方法的实现功能数据,该方法允许共同对齐和聚类曲线。它支持在一维域上定义的功能数据,但可能在多元代码中进行评估。它支持在数组中定义的功能数据,也支持通过“ FD”和“ Fundata”类的功能数据,分别用于“ FDA”和“ Fundata”软件包中定义的功能数据。当前,它支持在实际线路上定义的功能数据的移位,扩张和仿射扭曲功能,并使用SRVF框架来处理在特定间隔上定义的功能数据的保存边界扭曲。K-Means算法的主要参考:Sangalli L.M.,Secchi P.,Vantini S.,Vitelli V.(2010)````k-mean for Curve clustering'''。SRVF框架的主要参考:Tucker,J。D.,Wu,W。,&Srivastava,A。(2013)``使用相位和振幅分离的功能数据生成模型''。
地球.8.E 解释板块构造如何解释地质过程,包括海底扩张和俯冲,以及海脊、裂谷、地震、火山、山脉、热点和热液喷口等特征;地球.8.C 研究新的数据概念解释和创新地球物理技术如何导致当前的板块构造理论;地球.8.F 使用与速率、时间和距离相关的方程式计算板块的运动历史,以预测未来的运动、位置和由此产生的地质特征;地球.8.G 使用地震和火山分布的证据来区分汇聚、发散和变换板块边界的位置、类型和相对运动;地球.8.H 评估板块构造在地球子系统的长期全球变化中的作用,例如大陆沉积、冰川作用、海平面波动、大规模灭绝和气候变化。 Astro.5.B 研究和评估包括托勒密、哥白尼、第谷·布拉赫、开普勒、伽利略和牛顿在内的科学家的贡献,因为天文学从地心模型发展到日心模型;Astro.16.E 研究和描述天文学的当前发展和发现;
从脑电图信号中解码人类活动一直是一个热门的研究课题。虽然最近的研究越来越多地将重点从单一受试者转移到跨受试者分析,但很少有人探索该模型对以前未见过的受试者的脑电图信号进行零样本预测的能力。本研究旨在调查深度学习方法是否可以捕获人类脑电图信号中固有的与受试者无关的语义信息。这些见解对于脑机接口 (BCI) 至关重要,因为一方面,它们证明了模型对受试者特定时间偏差的稳健性,另一方面,它们显着增强了下游任务的通用性。我们使用大型语言模型 (LLM) 作为去噪代理,从嘈杂的脑电图信号中提取与受试者无关的语义特征。包括消融研究在内的实验结果强调了 LLM 在从嘈杂的 EEG 数据中解码与主题无关的语义信息方面的关键作用。我们希望我们的研究结果将有助于推进 BCI 研究,并帮助学术界和工业界将 EEG 信号应用于更广泛的应用。