抽象的胃肠道肿瘤(GIST)在其诊断和管理方面取得了显着进步,这是由有针对性的治疗发育和分子测试驱动的。鉴定KIT和PDGFRA等基因中的突变已改变了治疗方法,尤其是通过诸如伊马替尼(Imatinib)等有针对性的疗法,这些疗法改善了患者的出现。本综述探讨了基因组测试在要点中的关键作用,强调了其在套件/PDGFRA阴性的准确诊断,治疗计划和长期监视中的重要性。SDH缺陷的GIST是由影响琥珀酸脱氢酶复合物的突变或表观遗传变化引起的。SDH缺陷的GIST的复杂性,包括它们与遗传性综合征的相关性,例如遗传性副神经胶质瘤 - 嗜铬细胞瘤和/或SDHC启动子的过度甲基化,强调了对全面生殖线测试的需求。尽管有指导线的可用性,但在不同地区的基因组测试建议中仍然存在可变性,因此需要采用统一的方法。本综述提出了一种用于GIST的基因组检查的简化算法,并建议所有具有SDH缺陷的GIST的个体,无论种系测试结果如何,都需要监测额外的SDHX相关肿瘤,鉴于缺乏广泛可用的甲基化和全基因SDHA分析。
背景:一种新型的皮下脑电图技术可以对癫痫患者进行超长期监测。本文旨在描述外科医生在早期一系列植入手术中的经历以及参与者所经历的不适或并发症。方法:我们纳入了两项针对癫痫患者和健康成人的试验中的 38 例植入手术。分析了评估外科医生和参与者经验的问卷以及术后 21 天内发生的所有记录不良事件。结果:经过培训,植入可以在大约 15 分钟内完成。总体而言,植入手术被认为很容易执行,只有 2 次植入物固定在引入针中而必须使用新植入物的情况。取出手术被认为毫不费力。在 2 例病例中,取出过程中覆盖导线的硅胶套受损,但可以取出整个植入物而不在皮下留下任何异物。特别是在对健康参与者进行的试验中,一部分参与者在术后长达 21 天内出现了头痛或植入物疼痛形式的不良事件。在 6 例中,不良事件导致决定取出植入物并停止研究:其中四例涉及植入物疼痛或头痛;一例涉及术后局部感染;有一例因放置浅表导线导致植入后几周皮肤穿孔。结论:神经外科医生和耳鼻喉外科医生都认为植入和取出手术快捷且易于操作。大多数参与者对植入物的耐受性良好。但是,与任何此类手术一样,术后长达 21 天内都可能出现头痛或植入物周围疼痛。植入物的预期好处应该始终超过潜在的坏处。
电力组件的动态额定值 (DR) 是一种评估大型输配电设备(通常是输电线路、电力变压器、地下电缆)的实时容量并利用此知识调整这些组件的负载极限的方法。电力线动态额定值或动态线路额定值 (DLR) 是动态额定值领域的一项先驱技术。架空导线的热平衡是设计电力线容量极限时的决定性因素。电力线的最大载流量取决于环境温度、风速、风向、太阳辐射、湿度、位置、海拔高度以及导线尺寸和材料特性等因素。动态变压器额定值 (DTR) 是一项新兴技术,受到工业界和学术界的高度关注。与 DLR 类似,变压器的动态额定值依赖于通过定位变压器绕组中最热点对设备进行热评估。热点温度是确定最大允许载流量的限制因素。通过将负载限制从功率约束转变为温度约束,可以实现电力变压器的更好利用。最近,DLR 成为电力系统研究界公认的概念;DTR 也在研究人员中逐渐流行起来。与此同时,业界开始认识到 DR 的好处并投资于动态评级技术。然而,该技术的可靠性、适用性和安全性仍存在许多未解答的问题。核心问题之一是:如何将动态评级整合到短期和长期规划决策中?本论文中提出的工作结果表明,动态评级具有很高的潜力,可以改善电力系统性能,降低电力调度成本,并增加可再生能源在电力结构中的份额。此外,动态评级可以通过减少满足电力需求所需的投资并提供更便宜、更快捷的电网连接来帮助使可再生能源更容易获得。
AFRP ARAMID纤维增强塑料一种基于Tri的化合物,具有钙钛矿结构,例如Bazro 3,Basno 3和Bahfo 3,短BAMO 3(M:METAR)化合物的芳香纤维纤维增强塑料的化合物。通过将这些BMO相掺入Rebco层作为杂质(人造固定中心),可以比平常获得更高的磁场特性。在PLD方法的情况下,RebCO和BMO相可以合作生长,通过沉积已提前与BMO掺杂的固体目标,并在RebCO层中形成了纳米棒形BMO相。顺便说一句,通过更改掺杂量和膜形成过程条件,可以在一定程度上更改BMO的形状和密度。 CFRP一种FRP,代表碳纤维增强塑料。 FRP是一种结合两种或多种材料的复合材料,通过将塑料(树脂)作为基础材料并将纤维添加为增强材料,可以将塑料的轻质和高成型自由结合起来,以及纤维的高刚度和强度特性。在FRP中,添加为加固材料的碳纤维称为CFRP。 FEM分析有限元法(FEM)分析。将连续对象分为有限的“元素”,使用简单的数学模型近似于每个元素的属性,并形成同时分析整体行为的方法。 FFD的电线面对面双堆叠的缩写。两条基于RE的超导电线的超导侧与焊料或类似相连。即使一根电线杆缺陷,电流也可以通过稳定层传递到另一根钢丝杆,从而增加了基于RE的超导线的产率。此外,应力中心是两条电线的中心,这使得具有高弯曲强度。 GFRP玻璃纤维增强塑料
c. 两点和三点问题及其用不同方法解决的方法,固定强度。d. 平面测量的优点、缺点、局限性和误差。小型仪器:学习和使用阿布尼水准仪、箱式六分仪、印度模式测斜仪和受电弓 学期作业:实践练习和项目的详细信息:1.通过经纬仪测量水平和垂直角度,2.通过重复法测量三角形的水平角度。项目-1 3 经纬仪导线测量项目,至少有四条边的封闭导线。4 通过气测法计算水平和倾斜视线的水平距离和高程。项目-2 5 至少有两个相距 60 米的仪器站的视距轮廓线项目。6 平面测量中的辐射和交会法。项目-3 7 至少有四条边的封闭导线的平面测量项目。8 平面测量中三点问题的解。9 箱形六分仪和阿布尼水准仪的使用。10 研究和使用印度模式测斜仪和受电弓。项目-4 11 至少 500m 长度的道路项目,包括定线、剖面水准测量和横截面测量。注意:学期工作将包括: (i) 包含上述所有练习和项目记录的实地工作簿。(ii) 如下所述的全英制尺寸图纸文件 1) 经纬仪导线测量项目。1 张 2) 视距轮廓测量项目………..1 张 3) 平面表导线测量项目…..1 张 4) 三点问题的解决方案………… 1 张 5) 显示 L 型截面、道路平面图和典型横截面的道路项目……………………………………….Min -1 张 参考书目 1) Prof. T.P.Kanetkar 和 prof. S.V.Kulkarni。- 测量和水准测量卷。I & II 2) Prof. B.C.Punmia - 测量卷。I & II 3) 已故 David Clark。- 工程师平面和大地测量,卷。I 4) Cliver 和 clendening - 测量原理 5) P.B.Shahani - 高级测量,第 I 和 II 卷手册 S.P.Collins - 精确测量方法手册。
c. 两点和三点问题及其用不同方法解决的方法,固定强度。d. 平面测量的优点、缺点、局限性和误差。小型仪器:学习和使用阿布尼水准仪、箱式六分仪、印度模式测斜仪和受电弓 学期作业:实践练习和项目的详细信息:1.通过经纬仪测量水平和垂直角度,2.通过重复法测量三角形的水平角度。项目-1 3 经纬仪导线测量项目,至少有四条边的封闭导线。4 通过气测法计算水平和倾斜视线的水平距离和高程。项目-2 5 至少有两个相距 60 米的仪器站的视距轮廓线项目。6 平面测量中的辐射和交会法。项目-3 7 至少有四条边的封闭导线的平面测量项目。8 平面测量中三点问题的解。9 箱形六分仪和阿布尼水准仪的使用。10 研究和使用印度模式测斜仪和受电弓。项目-4 11 至少 500m 长度的道路项目,包括定线、剖面水准测量和横截面测量。注意:学期工作将包括: (i) 包含上述所有练习和项目记录的实地工作簿。(ii) 如下所述的全英制尺寸图纸文件 1) 经纬仪导线测量项目。1 张 2) 视距轮廓测量项目………..1 张 3) 平面表导线测量项目…..1 张 4) 三点问题的解决方案………… 1 张 5) 显示 L 型截面、道路平面图和典型横截面的道路项目……………………………………….Min -1 张 参考书目 1) Prof. T.P.Kanetkar 和 prof. S.V.Kulkarni。- 测量和水准测量卷。I & II 2) Prof. B.C.Punmia - 测量卷。I & II 3) 已故 David Clark。- 工程师平面和大地测量,卷。I 4) Cliver 和 clendening - 测量原理 5) P.B.Shahani - 高级测量,第 I 和 II 卷手册 S.P.Collins - 精确测量方法手册。
Paoline.Coulson@nerf.be 脑皮层电图能够记录来自大脑表面的高质量信号。该技术可覆盖广泛的大脑,这对于临床应用至关重要,例如癫痫发作区的划定、皮层功能的映射或脑机接口神经信号的解码。提高这些记录的分辨率有望提高性能,但需要增加电极密度。1 在被动方案中,每个电极都单独连接到读出系统,从而产生笨重而复杂的连接器。在这里,我们引入了一种主动连接方案,其中使用薄膜晶体管来互连多路复用电极,从而使电极与导线的比率呈指数增加。此前,我们已经开发了一种概念验证设备,其中集成了 256 个电极和氧化铟镓锌 (IGZO) 晶体管,仅使用 32 条导线即可寻址。增量 ΔΣ CMOS 读出集成电路是定制设计的,复用率为 16:1。该系统通过记录小鼠体感皮层的信号在体内进行了验证,其噪声水平低于类似的多路复用设备。2 在这里,我们的技术已适应柔性半导体代工厂建立的外部生产流程。借助此流程,该设备将工业制造的晶体管整合到柔性聚酰亚胺基板上,从而实现低成本、可扩展且快速生产的技术。我们设备的新版本目前正在开发中,它整合了 3,072 个电极,仅用 128 根电线即可寻址,多路复用率为 32:1。电极间距减小到 200 µm,电极直径从 100 到 30 µm。整个阵列覆盖 2×1 cm² 的面积,厚度为 30µm,这使其能够符合人脑曲率。我们的设备展示了多路复用的潜力,可以通过简化的连接方案实现高密度和大面积记录,而这是传统无源电极技术无法实现的。该设备为改进诊断和治疗铺平了道路,例如升级的神经假体,具有增强的解码性能。改进的制造流程实现了可扩展性,从而促进了该技术的使用,并使其更接近临床转化。
成本降低是近期从占主导地位的金线键合向铜线键合转变的主要驱动力。封装成本的其他降低来自基板和引线框架的新发展,例如,QFP 和 QFN 的预镀框架 (PPF) 和 uPPF 降低了电镀和材料成本。但是,由于表面粗糙和镀层厚度薄,某些新型引线框架上的二次键合(针脚键合)可能更具挑战性。最近引入了钯涂层铜 (PCC) 线来改进裸铜线的引线键合工艺,主要是为了提高可靠性和增强针脚键合工艺。需要进行更多的基础研究来了解键合参数和键合工具对改善针脚键合性的影响。本研究调查了直径为 0.7 mil 的 PCC 线在镀金/镍/钯的四方扁平无引线 (QFN) PPF 基板上的针脚键合工艺。使用两种具有相同几何形状但不同表面光洁度的毛细管来研究毛细管表面光洁度对针脚式键合工艺的影响。这两种毛细管类型分别为常用于金线键合的抛光表面光洁度类型和表面光洁度更粗糙的颗粒光洁度毛细管。比较了无引线粘贴 (NSOL) 和短尾之间的工艺窗口。研究了键合力和表层剪切波幅度等工艺参数的影响。工艺窗口测试结果表明,颗粒毛细管具有较大的工艺窗口,出现短尾的可能性较低。结果表明,较高的剪切波幅度可增加成功填充针脚式键合的机会。为了进一步比较毛细管表面光洁度,测试了 3 组具有不同键合力和剪切波幅度的参数设置。对于所有三组测试的毛细管,粒状毛细管的粘合强度质量更好。与抛光型相比,粒状毛细管的针脚拉力强度更高。开发了该过程的有限元模型 (FEM),以更好地理解实验观察结果。从模型中提取了导线和基底界面处导线的表面膨胀量(塑性变形),并将其归因于粘合程度。该模型用于证实不同表面光洁度下粘合的实验观察结果。
1. 阅读每个产品的快速安装指南 (QIG),了解有关安装 IQ 微型逆变器和电池系统的详细信息。 2. 对于所有带有 IQ 微型逆变器和 IQ 电池 5P 的新安装,安装人员应采购捆绑的 SKU (ENV-IQ-GWM-CK2-INT-KIT),其中包括一个 IQ 网关计量器和一个通信套件 2。此外,安装人员必须采购适合安装长度的控制电缆。Belcom 制造经过测试和支持的控制电缆;型号为 4302P2254-01。 3. 根据当地电气法规,确定 IQ 电缆末端和配电板之间交流导线的长度和横截面积。建议这些导线之间的电压降不超过 1%,并且从连接点到最远的微型逆变器的 PV 电路中的总电压降不超过 2%。 4. 20 A B 曲线断路器通常保护 2.5 mm² IQ 电缆。但是,如果当地法规可能不适用,则必须了解并遵守当地法规。5. 根据当地电气法规,在 PV 模块框架、阵列安装结构和金属微型逆变器安装支架之间安装等电位连接。6. 根据当地电气法规,安装浪涌保护装置 (SPD) 和剩余电流装置 (RCD)。7. 在三相系统中,微型逆变器和电池应在三相之间保持平衡,以避免相位不平衡。8. IQ Gateway Metered 附带两个电流互感器 (CT) - 一个用于生产计量,另一个用于消耗计量。对于三相系统,订购和使用四个额外的 CT-100-SPLIT-ROW 或 CT-100-SPLIT(两个分别用于监控额外的生产和消耗通道)是必不可少的。 CT-100-SPLIT-ROW 最适合电缆尺寸最大为 16 mm 2 的小型消费单元;CT-100-SPLIT 可用于电缆尺寸最大为 25 mm 2 的较大电缆。9. 任何带有 IQ 电池的系统都必须将 Wi-Fi 或以太网作为互联网连接的主要模式。10. 对于每相安装容量大于 17 kW 的系统,请按照配电网络运营商 (DNO) 的指示使用 G99 认可的第三方网络保护继电器。这仅适用于三相安装。11. 为了使 IQ 网关与三相应用中的所有微逆变器通信,电力线通信信号必须在三相之间耦合。这需要添加售后相位耦合器设备。有关详细信息,请参阅三相同相系统的相位耦合器(欧洲)详细技术简介。
热超声键合过程中,金球和铝合金金属化层之间的焊接是通过界面处金和铝的固态混合以及金铝金属间相的形成而发生的。由该金属间相组成的总键合面积的比例通常称为金属间覆盖率,缩写为 IMC。超声波对于通过摩擦形成 IMC 至关重要 [1-3],但在整个界面上并不均匀,开始时是离散的岛状物,在超声波的作用下生长,最终将球锚定在铝金属化层上。如果优化了键合参数,大部分界面面积(多达 70-80%)应由 IMC 组成。在拉力测试期间,金-铝界面保持机械强度所需的最小 IMC 量只需略大于导线的横截面积。但是,如果界面大面积未键合,空气、空气中的污染物和环氧模塑料就会渗入球底,从而导致后续组装步骤中发生氧化和腐蚀反应。因此,最大化 IMC 是优化球键合工艺的重要部分。IMC 的测量通常是通过使用不会侵蚀金属间化合物或金的 KOH 溶液溶解 Al 键合垫 [4] 并观察球底面来完成的。确定形成坚固球键合所需的 IMC 的精确量并不是一门精确的科学,但经验准则是,真正键合球面积的 70% 应由 Au-Al 金属间化合物组成。有两种常用方法可用于查看和记录金球底面图像中的金属间化合物覆盖率,以便随后使用图像分析软件进行测量。第一种是使用光学显微镜 (LM),第二种是使用扫描电子显微镜 (SEM)。SEM 要求将样品镀金,并放置在 SEM 腔中,然后抽真空并进行检查,而 LM 不需要特殊且耗时的样品制备,被认为比 SEM 更快、更容易。但是,每种方法都有其优点,并且需要了解某些因素,尤其是 LM,才能正确测量 IMC。光学显微镜可以使用不同的照明模式,与 SEM 不同,在显微镜和照明下对样品进行对准可能会使 IMC 的识别和测量变得复杂,并且很容易导致错误的测量。但是,虽然覆盖率的光学评估更快,但也更难以解释。在半导体封装的组装工程鉴定中,由于耗时较少,因此似乎更倾向于采用光学评估金属间覆盖率。在新封装鉴定的组装工程阶段,可能需要通过 SEM 测量 IMC 来获得详细信息。但是,在大规模生产过程中,光学测量可能更合适,因为它们耗时较少。本文的目的是提供