式中,T d 表示信号延迟,K为系数,DK表示介质材料的介电常数。可以看出,材料的介电常数越低,信号延迟越低,信号保真度越高。因此,在第五代通信技术深入发展的背景下,使用低k材料成为降低信号滞后时间的有效途径。一般在微电子领域常用的介质材料都是介电常数相对较低的材料。低介电材料是指介电常数高于空气(1)而低于二氧化硅(3.9)的材料,其值范围在1~3.9之间。低介电聚合物材料因具有易加工、热稳定性、电绝缘性等优点,被广泛应用于电子电工、电子集成、印刷电路板、通讯材料等领域。目前已知聚四氟乙烯(PTFE)[6, 7]、液晶聚合物(LCP)[8 – 10]、聚酰亚胺(PI)[11 – 14]等已广泛应用于电路板基材,环氧树脂、氰酸酯树脂等也作为优良的胶粘剂广泛用于电子设备的封装材料[15 – 17]。图1为环氧树脂、氰酸酯树脂和聚四氟乙烯的介电性能。
➢ 半导体封装用玻璃基板所要求的特性及玻璃中介层的发展趋势! ➢ 三大半导体厂商的背面电源技术优缺点、其经营策略、量产计划如何? ➢ 晶圆代工厂、EMS、无晶圆厂、OSAT、半导体制造设备相关公司的经营战略! ➢ 采用小芯片的二维和三维异质集成的特点和应用! ➢ 2.5D、3D封装所需的材料特性!重新分布层、封装材料、底部填充材料等等! ➢ FOWLP/PLP制造工艺类型、相关公司以及贴装封装元件的要求! ➢ 全球 HBM 市场份额争夺战愈演愈烈,日本企业面临巨大商机! ➢ 探讨了底部填充所需的性能和技术趋势、市场预测以及各企业的市场份额! ➢ 设计和质量要求满足芯片在镀铜布线制造中的需求! ➢ 探讨了混合键合的方法、优势和挑战以及各公司产品的特点和技术策略!
摘要:神经电极是神经科学、神经疾病和神经机接口研究的核心设备,是连接大脑神经系统和电子设备的桥梁。目前使用的大多数神经电极都是基于刚性材料,其柔韧性和拉伸性能与生物神经组织有显著不同。本研究采用微加工技术开发了一种基于液态金属 (LM) 的 20 通道神经电极阵列,该阵列采用铂金属 (Pt) 封装材料。体外实验表明,该电极具有稳定的电性能和优异的机械性能,如柔韧性和弯曲性,使电极与颅骨形成保形接触。体内实验还使用基于 LM 的电极从低流量或深度麻醉下的大鼠记录了脑电信号,包括由声音刺激触发的听觉诱发电位。使用源定位技术分析了听觉激活的皮层区域。这些结果表明,基于 20 通道 LM 的神经电极阵列满足脑信号采集的需求,并提供支持源定位分析的高质量脑电图 (EEG) 信号。
颅内、眼内和血管内的压力是评估各种疾病患者的重要参数,对于刚从受伤或手术中恢复的患者尤其重要。与传统设备相比,通过自然生物吸收过程消失的传感器在这方面具有优势,因为省去了与检索相关的成本和风险。本文介绍了一类生物可吸收压力传感器,该传感器的工作寿命长达数周,物理寿命短至数月,这些综合指标代表了其对最近报道的替代方案的改进。关键进展包括:1) 使用单晶硅膜和天然蜡材料混合物分别将设备封装在其顶面和周边区域;2) 使用机械结构在封装材料溶解和消失时实现稳定运行;3) 使用附加传感器来检测生物流体是否开始渗透到主动传感区域。涉及在长达 3 周的时间内监测大鼠模型颅内压的研究显示,其性能水平与不可吸收的临床标准相当。本文报告的许多概念可广泛适用于其他类别的生物可吸收技术。
环氧树脂是一种反应性预聚物,其特征在于存在由两个碳原子和一个氧原子组成的环状结构的环氧基团,通过自均聚或与胺、酸酐、酸、醇或酯等共反应物发生交联反应形成大分子网络[1-3]。环氧树脂已被公认为最广泛使用的具有战略意义的热固性材料,由于其固有的机械和化学稳定性、耐热和耐腐蚀性、电绝缘性和强粘结性,通常应用于防腐涂料、粘合剂、半导体封装材料、电绝缘材料和高性能复合材料[4,5]。环氧树脂市场由印度、韩国、中国和日本等亚洲国家主导,其份额高达41.8%。这受到与北美和欧洲相比环境法规相对较少和国家鼓励制造业政策的影响,并且由于产品的性质,在亚洲大陆的发展中国家和新兴国家中得到广泛使用,该产品在道路和建筑物等建筑领域需求量很大。2019 年至 2024 年期间的年均增长率也是亚洲最高,为 6.9%,其次是中东和非洲、南美、北美和欧洲。2022 年,
摘要:电子封装领域迫切需要具有树脂基体的高性能复合材料,因为它们具有低介电常数、出色的耐高温性、优异的耐腐蚀性、重量轻和易于成型等特点。在本文中,为了改变邻苯二甲腈的介电性能,制备了空心玻璃微球 (HGM) 填充的氟化邻苯二甲腈 (PBDP) 复合材料,其填料含量范围为 0 至 35.0 vol.%。扫描电子显微镜 (SEM) 观察表明改性 HGM 颗粒均匀分散在基质中。PBDP/27.5HGM-NH 2 复合材料在 12 GHz 时表现出 1.85 的低介电常数。含有硅烷化 HGM 填料的复合材料的 5% 热重温度 (T5) (481-486 ◦ C) 高于最低封装材料要求 (450 ◦ C)。此外,PBDP/HGM-NH 2 复合材料的耐热指数 (T HRI) 高达 268 ◦ C。PBDP/HGM-NH 2 复合材料的储能模量在 400 ◦ C 时显著增加至 1283 MPa,与 PBDP 邻苯二甲腈树脂 (857 MPa) 相比增加了 50%。本复合材料的优异介电性能和热性能可为电子封装和能源系统热管理的全面应用铺平道路。
抽象的微囊化过程用于保留益生菌细菌的生存能力。这项研究准备了使用乳清蛋白和阿拉伯胶的封装混合物,以覆盖limosilactobacillus reuteri细菌。真空烤箱用于封装过程,并遵循实验计划设计建议的比例。水分含量,粉末产量,细菌活细胞数量的变化以及封装细菌的效率。随后,确定了产生封装细菌的最佳条件,并使用扫描电子显微镜(SEM)检查了细菌周围的封装材料。实验设计的结果表明,limosilactobacillus reuteri的最佳体积为3毫升,含有11.74 loot CFU/mL,与包含10 g乳清蛋白和3.75 g胶化胶的封装溶液的混合物混合在一起。发现封装过程的最佳条件是温度为50°C,压力为0.6 bar,持续180分钟。在9.12 cfu/g记录封装程序后,细菌枚举的对数值,而封装有效性为77.68%,伴随着4.26%的水分含量。粉末的产率显示为83.58%。通过扫描电子显微镜进行的形态分析说明了包裹limosilactobacillus reuteri细菌的包膜。包围细菌的壳直径达到68.29 nm。存储周期在4°C和25°C下没有显着影响细菌计数或封装效率6个月。在储存条件下,使用乳清蛋白和阿拉伯胶混合在细菌微囊中并保持细菌可行数的可能性。
目标 提供有关 MEMS 技术和制造的基本知识。 课程目标 本课程应使学生能够: 1. 了解微制造的演变。 2. 学习各种制造技术。 3. 了解微传感器和微执行器。 4. 学习各种微执行器的设计。 第一单元简介(9 小时) 基本定义 – 微制造的演变 – 微系统和微电子学,缩放定律:静电力、电磁力、结构刚度、流体力学和传热的缩放。 第二单元微传感器(9 小时) 简介 – 微传感器:生物医学传感器和生物传感器 – 化学传感器 – 光学传感器 – 压力传感器 – 热传感器、声波传感器。 第三单元微执行器(9 小时) 微驱动:使用热力、压电晶体、静电力进行驱动。基于 SMA 的微执行器,微执行器:微夹钳、微电机、微阀门、微泵、微加速度计 - 微流体。第四单元 MEMS 制造技术(9 小时)MEMS 材料:硅、硅化合物、压电晶体、聚合物微系统制造工艺:光刻、离子注入、扩散、氧化、CVD、溅射、蚀刻技术。第五单元微加工(9 小时)微加工:体微加工、表面微加工、LIGA 工艺。封装:微系统封装、基本封装技术、封装材料选择。
扁平无引线 (QFN) 半导体封装是增长最为稳定的芯片载体类型之一,随着原始设备制造商 (OEM) 努力将更多的信号处理功能放入更小的空间,预计 QFN 封装将继续增长。由于 QFN 封装体积小、尺寸紧凑、输入/输出高、散热性好,因此成为芯片组整合、小型化和高功率密度芯片的热门选择,尤其是汽车和射频市场。与任何封装一样,可靠性至关重要,由于 QFN 封装被广泛接受,OEM、集成设备制造商 (IDM) 和外包组装和测试供应商 (OSATS) 要求继续提高 QFN 封装的可靠性。化学工艺处理铜引线框架的表面,以增强模塑化合物的附着力,并减少芯片封装中的分层,从而提高 QFN 封装的可靠性。这些化学工艺导致铜表面微粗糙化,同时沉积一层耐热薄膜,增强环氧封装材料和引线框架表面之间的化学键合。通常,这种工艺可以可靠地提供 JEDEC MSL-1 性能。虽然这种化学预处理工艺在分层方面提供了更好的性能,但它会给引线框架封装商带来其他挑战。表面粗糙度的增加会加剧芯片粘接粘合剂渗出(环氧树脂渗出或 EBO)的趋势,导致银填充粘合剂分离并对封装质量和可靠性产生负面影响。此外,渗入引线框架表面的任何环氧树脂都会干扰其他下游工艺,例如向下粘合或模塑料粘合。
摘要。目标。确保可植入设备的寿命对于它们的临床实用性至关重要。这通常是通过密封在不可渗透的外壳中密封敏感的电子产品来实现的,但是,这种方法限制了微型化。另外,有机硅封装已显示出对植入的厚膜电子设备的长期保护。然而,当前的许多保形包装研究都集中在更刚性的涂层上,例如丙烯烯,液晶聚合物和新型无机层。在这里,我们考虑使用薄膜技术保护植入物的潜力,其特征是厚膜的33倍。方法。在血浆增强化学蒸气下沉积的钝化(Sio X,Sio X N Y,Sio X N Y + SIC)下的铝合作的梳子结构封装在医疗级硅硅酮中,共有六种钝化/硅酮组合。在连续的±5 V双相波形下,在67天的磷酸盐生理盐水中将样品在磷酸盐生理盐水中陈化多达694天。周期性的电化学阻抗光谱测量值监测了金属痕迹的泄漏电流和降解。使用傅里叶转换红外光谱,X射线光电光谱,聚焦离子束和扫描电子显微镜来确定任何封装材料变化。主要结果。在衰老过程中未观察到硅酮分层,钝化溶解或金属腐蚀。对于这些样品,唯一观察到的故障模式是开路线键。明显的能力。阻抗大于100gΩ,在铝轨道之间保持了硅胶封装和SIC钝化的封装。相比之下,Sio X的进行性水合导致其阻力减小数量级。这些结果表明,当与适当的无机薄膜结合使用时,有机硅封装对薄膜进行轨道的良好保护。该结论对应于先前的有机硅