用于娱乐和商业目的的飞机系统 (sUAS)。联邦航空管理局 (FAA) 估计,这些系统中有近 160 万个用于娱乐目的,并将在 2015 年全年售出 (FAA, 2015a)。在 FAA 的 sUAS 在线注册系统上线后的第一个月,已有近 30 万 sUAS 所有者注册 (FAA, 2016),这表明至少有相同数量的 sUAS 在国家空域 (NAS) 内使用或打算使用。随着 FAA 开始制定 sUAS 的娱乐、商业和公共运营用途的法规 (FAA, 2013),sUAS 的数量和种类预计将增加。尽管 sUAS 的使用量不断增长,并且 FAA 试图规范这些系统的运行,但尚无明确的指导方针来解释 sUAS 操作员在 NAS 飞行时应获得的信息类型。
培训通告 (TC) 3-04.62 标准化了机组人员培训计划 (ATP) 和飞行评估程序。本机组人员培训手册 (ATM) 提供了执行小型无人机系统 (SUAS) 机组人员培训的具体指导。它基于陆军训练网络的陆军条令出版物 (ADP) 和陆军条令和参考出版物 (ADRP) 7-0(训练单位和培养领导者)中概述的培训原则,网址为:https://atn.army.mil/index.aspx 下的“单位培训”选项卡。本 ATM 确定了机组人员资格、进修、任务和继续培训和评估要求。除非另有说明,本手册适用于现役陆军、陆军国民警卫队局 (NGB)、美国陆军国民警卫队 (ARNG)、美国陆军预备役 (USAR) 和陆军文职人员部 (DAC) 中的所有 SUAS 机组成员及其指挥官,以及任何未被其他 ATM 涵盖的无人机系统 (UAS) 机组成员及其指挥官。本手册不是独立文件;必须满足陆军条例 (AR) 600-105(陆军军官航空服务)、AR 600-106(非陆军航空人员的飞行状态)和 TC 3.04.62(小型无人机系统机组人员训练计划)中的所有要求。操作手册是飞机操作的权威依据。如果操作手册和本手册中的机动描述存在差异,则本手册仅作为培训和飞行评估目的的权威依据。本手册的实施符合 AR 95-1(飞行规则)和 TC 3-04.11。如果本手册与 TC 3-04.11 之间存在冲突,ATP 指挥官将根据要求和单位任务确定优先执行哪本手册的方法。本手册与 AR 相结合将帮助各级 SUAS 指挥官制定全面的 ATP。通过使用本 ATM,指挥官可确保个别机组人员和机组人员的熟练程度与单位任务相称,并且无人机机组人员 (UAC) 经常采用标准技术和程序。UAC 将使用本手册作为执行机组人员职责的“操作方法”来源。它提供了绩效标准和评估指南,以便机组人员了解预期的绩效水平。每个任务都提供了如何执行任务以达到标准的描述。操作 SUAS 的现役陆军、国民警卫队和陆军预备役部队的 ATP 指挥官将使用此 ATM 为指定操作员制定个人指挥官任务清单。ATP 指挥官将指派承包商/DAC 操作员协助制定根据当前合同职位定制的个人指挥官任务清单,使用 ATM、AR 95-20、AR 95-23 和/或当地指挥指令。指挥官和主教练 (MT) 将使用此手册、AR 95-23、和 AR 95-20 作为协助指挥官制定和实施 ATP 的主要工具。本出版物的倡导者是美国陆军航空兵卓越中心 (USAACE) 飞行训练处 (FTB) 训练和条令局 (DOTD)。使用陆军出版局 (APD) 网站上的陆军部 (DA) 表格 2028(出版物和空白表格的建议更改)的电子版 (XFDL) 版本,向以下机构提交意见和建议:培训和条令局 (DOTD) 主任,收件人:飞行训练处 (FTB) (ATZQ-TDT-F),建筑 4507,安德鲁斯大道,拉克堡,阿拉巴马州 (AL) 36362-5263,电子邮件:usarmy.rucker.avncoe.mbx.ATZQ-TDT-F@mail.mil 或在线访问:https://www.us.army.mil/suite/page/655026。本出版物实施了标准化协议 (STANAG) 3114(第八版)的部分内容。本出版物已根据操作安全考虑进行了审查。
空域系统 (NAS) 中,新程序和技术对于确保空域安全运行和尽量减少 UAS 对当前空域用户的影响是必不可少的。目前,小型 UAS 在民用空域的使用受到限制,因为它们不具备检测和避开其他飞机的能力。在本文中,我们将介绍一个框架,该框架由基于广播式自动相关监视 (ADS-B) 的传感器、航迹估计器、冲突/碰撞检测和解决方案组成,可减轻碰撞风险。ADS-B 提供长距离、全方位入侵者检测,对尺寸、重量、功率和成本要求相对较低。所提出的冲突/碰撞检测和冲突/碰撞解决规划算法是在局部级别框架中设计的,该框架是展开的、未倾斜的机身框架,其中本机静止在地图中心。路径规划方法旨在随着与本机距离的增加而实现多分辨率,以考虑自分离和避免碰撞的阈值。我们使用模拟 ADS-B 测量来演示和验证这种方法。
作者地址:Jane Cleland-Huang,计算机科学与工程系,美国印第安纳州圣母大学,JaneHuang@nd.edu;Theodore Chambers,计算机科学与工程系,美国印第安纳州圣母大学,tchambe2@nd.edu;Sebastian Zudaire,阿根廷库约国立大学巴尔塞罗学院,sebastian.zudaire@ib.edu.ar;Muhammed Tawfiq Chowdhury,计算机科学与工程系,美国印第安纳州圣母大学,mchowdhu@nd.edu;Ankit Agrawal,计算机科学系,美国密苏里州圣路易斯大学,ankit.agrawal.1@slu.edu;Michael Vierhauser,LIT 安全与正确系统实验室,奥地利林茨约翰内斯开普勒大学,michael.vierhauser@jku.at。
1.1 问题陈述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................................................................................................................................................................................. 3 1.6 贡献.................................................................................................................................................................................................................................................................................................... 4 1.7 论文概述....................................................................................................................................................................................................... 4 1.7 论文概述....................................................................................................................................................................................................................... 4 . . . . . . . 4
在按照目视飞行规则飞行时,飞行员主要依靠视觉扫描来避开其他飞机和空中碰撞威胁。联邦航空管理局的记录表明,与无人机的近距离接触正在增加,2016 年报告的无人机系统 (UAS) 目击或近距离碰撞达到 1,761 起。这项研究旨在评估飞行员目视检测配备频闪灯的 UAS 平台的有效性。10 名飞行员组成的样本驾驶通用航空飞机,对配备频闪灯的小型 UAS (sUAS) 进行五次拦截。参与者被要求指出他们何时目视发现无人机。比较飞机和 sUAS 平台的地理位置信息以评估能见距离。研究结果用于评估日间频闪灯作为一种增强飞行员 sUAS 检测、能见度和防撞能力的方法的有效性。参与者在 7.7% 的拦截中发现了无人机。由于缺乏数据点,作者无法确定频闪灯是否能改善 UAS 视觉检测。作者建议进一步研究使用 sUAS 安装的频闪灯进行夜间视觉检测的有效性。
13. 摘要(最多 200 个字)无人机系统 (UAS) 的普及加剧了恶意行为者利用该技术进行恶作剧或伤害的不对称威胁。现有的地面解决方案受到视线的限制,而人工操作的响应无人机响应速度较慢且劳动强度较大。因此,需要具备基于视觉的自主追击和拦截未经授权的无人机的能力。为了解决这个问题,作者开发了一种计算机视觉 (CV) 算法,用于在现场条件下检测、跟踪和估计悬停和移动的空中小型 UAS 目标的相对位置和范围。将基于 CV 的测量结果与 GPS 数据进行比较,以评估 CV 算法的范围和角度估计性能。然后,飞行控制算法利用简单的角度制导原理处理 CV 估计的范围和角度信息以追击和拦截目标。使用原型无人机对该算法进行了现场测试。这项研究将为商用现货反无人机能力的概念设计和硬件实现选择提供参考。更广泛地说,这项研究为自主物体跟踪应用的知识体系做出了贡献。
本论文 - 开放获取由 Scholarly Commons 免费提供给您。它已被 Scholarly Commons 的授权管理员接受纳入论文和论文。有关更多信息,请联系 commons@erau.edu。
美国运输部联邦航空管理局华盛顿特区 20591 摘要:通过一系列行业范围内的数据调用收集了潜在的 sUAS BVLOS 操作场景/用例和 DAA 方法。向每位 333 豁免持有者征求了相同的信息。记录了来自 5,000 多名豁免持有者的摘要信息,收到的信息具有不同的详细程度,但提供了相关的经验信息来概括用例。制定了一项计划并完成了测试以评估 RLOS,这是安全 BVLOS 操作的潜在关键限制因素。介绍了所用设备、飞行测试区域、测试有效载荷和在不同高度进行测试的装置的详细信息,并提供了简化数学模型、在线建模工具和飞行数据的比较结果。提出了一个操作框架,该框架定义了推荐要求将使 sUAS 操作 BVLOS 成为可能的环境、条件、约束和限制。该框架包括可以基于 FAA 和行业行动建立的策略,这些策略应该会导致近期 BVLOS 航班增加。对 sUAS DAA 方法的评估是通过五个子任务完成的:对飞行员和地面观察员的观察和避免性能的文献综述、对 DAA 标准和推荐基线性能的调查、对现有/正在开发的 DAA 技术和性能的调查、对选定 DAA 方法的风险评估以及飞行测试。通过文献综述评估了飞行员和地面观察员的观察和避免性能。DAA 标准的制定——这里的重点非常明确——是通过与科学与研究小组 (SARP) 合作以及对有人驾驶和无人驾驶飞机交互的模拟来完成的。通过文献综述、信息请求和直接互动收集了有关 sUAS DAA 方法的信息。通过描述系统类型和定义指标和指标值来分析这些信息。通过关注 SMS(安全管理系统)流程的安全风险管理 (SRM) 支柱来评估与 sUAS DAA 系统相关的风险。这项工作 (1) 确定了与 BVLOS 中 sUAS 操作相关的危险,(2) 提供了考虑现有控制措施的初步风险评估,以及 (3) 建议采取额外的控制和缓解措施,以进一步将风险降低到最低实际水平。最后,进行了飞行测试以收集有关清晰和 DAA 系统危险的初步数据。
16. 摘要 桥梁是交通基础设施系统的重要组成部分之一,对国家经济非常重要,因为它们可以跨越物理障碍,大大减少旅行时间和旅行成本。与其他类型的交通基础设施类似,桥梁也会随着时间的推移而恶化。因此,应定期检查桥梁,以确保其在当前交通条件下的可用性、容量和安全性。随后,各级交通机构(例如联邦、州、地方和部落)投入大量时间和金钱定期监测和检查桥梁状况,作为其基础设施资产管理计划的一部分。这些交通机构使用收集到的数据来做出维护、维修和施工决策。作为桥梁检查的一个重要组成部分,桥面检查确保了桥面上、桥面上和桥面内所有事物的可用性和安全性。传统上,桥面检查是在地面进行的,检查员要么目视检查表面状况,要么解释锤击或链条拖动的声学反馈以确定地下状况。这些传统方法有许多局限性,包括但不限于成本高、劳动密集、耗时、变化性大、需要定期安排专业人员以及不安全。遥感技术的最新进展,尤其是基于小型无人机系统 (S-UAS) 的机载成像技术和基于对象的图像分析技术,已显示出改善桥面检查的前景。该项目探索了基于 S-UAS 的机载成像技术和基于对象的图像处理技术在开发完整的数据采集和分析系统中的实用性,以低成本准确、快速地检测和评估桥面磨损表面和地下损伤。该项目制定了实施拟议的基于 S-UAS 的检查系统的指南,以协助交通运输机构进行劳动力发展和专业培训。