本文件介绍了美国国防部 (DoD) 在未来 25 年(2002 年至 2027 年)开发和使用无人驾驶飞行器 (UAV) 和无人驾驶战斗机 (UCAV) 的路线图。国防部的作战无人机系统包括捕食者、猎人、影子和先锋,它们在最近的军事行动中表现出了强大的能力。全球鹰等开发系统和许多小型无人机系统也在最近的战斗和战斗支援行动中接受了考验。总的来说,这一技术领域为改变这个国家开展各种军事和军事支援行动的方式提供了巨大的机会。与任何新技术一样,人们自然不愿意过渡到一种全新的能力。在战斗和现实训练环境中充分展示无人机的需求对于这项技术的迁移至关重要。
小型无人机系统在战场上的快速扩张,正如俄罗斯在乌克兰的战争所证明的那样,颠覆了我们对空中优势的传统定义。在势均力敌的冲突中,对手的先进系统可能会使美国空军 70 年来在对抗有人威胁时保持空中优势的记录变得站不住脚。作为回应,美国及其盟友和伙伴必须在文化上以及在组织、训练和装备部队的方式以及计划、执行和指挥和控制行动的方式上进行调整和创新。必要的调整包括部队和总部的分散行动以及对委派风险和决策权的重新构想。如果我们在系统和组织层面都进行创新,就可以实现高端和低端能力的平衡组合。A
随着无人机系统 (UAS) 不断融入美国国家空域系统 (NAS),需要量化无人机和载人飞机之间空中碰撞的风险,以支持法规和标准的制定。监管机构和标准制定组织都广泛使用了使用飞机飞行概率模型的蒙特卡罗碰撞风险分析模拟。我们之前已经展示了一种开发小型无人机系统 (sUAS) 飞行模型的方法,该方法利用开源地理空间信息和地图数据集来生成具有代表性的低空无人操作。这项工作在之前的研究基础上进行了扩展,评估了开源数据的可扩展性和多样性,以支持当前所需的风险评估。我们还考虑将这些轨迹与生成式载人飞机模型配对,以创建用于蒙特卡罗模拟的相遇。
本文件介绍了美国国防部 (DoD) 在未来 25 年(2002 年至 2027 年)开发和使用无人驾驶飞行器 (UAV) 和无人驾驶战斗机 (UCAV) 的路线图。国防部的作战无人机系统包括捕食者、猎人、影子和先锋,它们在最近的军事行动中表现出了强大的能力。全球鹰等发展中的系统和许多小型无人机系统也在最近的战斗和战斗支援行动中接受了考验。总的来说,这一技术领域为改变美国开展各种军事和军事支援行动的方式提供了巨大的机会。与任何新技术一样,人们自然不愿意过渡到全新的能力。在战斗和现实训练环境中充分展示无人机的能力对于这项技术的迁移至关重要。
俄乌战争清楚地表明了小型无人机系统(SUAS)在现代和未来战场上的重要性。随着美国陆军从欧洲冲突中吸取教训,并将自身重点转向为大规模作战行动(LSCO)做准备,各级部队的 SUAS 整合成为首要训练重点。尽管美国陆军率先使用 SUAS 系统,但我们未能像俄罗斯和乌克兰武装部队那样快速地大规模部署和实施该技术。如果不在战术层面获取和训练相关平台,我们就无法实现战略和战役层面对 SUAS 整合的高度重视和需求。一支普通骑兵部队通常拥有一两架“渡鸦”(无人机)和几架“黑黄蜂”(无人机)。这些数量不足,需要补救。
本文件介绍了美国国防部 (DoD) 在未来 25 年(2002 年至 2027 年)开发和使用无人驾驶飞行器 (UAV) 和无人驾驶战斗机 (UCAV) 的路线图。国防部的作战无人机系统包括捕食者、猎人、影子和先锋,它们在最近的军事行动中表现出了强大的能力。全球鹰等开发系统和许多小型无人机系统也在最近的战斗和战斗支援行动中接受了考验。总的来说,这一技术领域为改变美国开展各种军事和军事支援行动的方式提供了巨大的机会。与任何新技术一样,人们自然不愿意过渡到一种全新的能力。在战斗和现实训练环境中充分展示无人机的需求对于这项技术的迁移至关重要。
作者注:本文旨在从美国陆军轻步兵营在受限地形中执行决定性行动的角度描述当前小型无人机系统 (SUAS) 的能力和使用所面临的挑战。它受到 METT-TC(任务、敌人、地形和天气、可用部队和支援、可用时间、民事考虑)的严重影响,并不旨在为所有 SUAS 的使用提供权威性意见。本分析的范围也仅限于当前部署的“记录计划”SUAS,并不声称完全了解/理解最新的先进 SUAS 能力、研究和开发工作或 SUAS 理论的概念方向。希望本文中包含的观察和经验教训可以为当前和未来的 SUAS 现代化工作(包括物资和理论)提供参考。与所有步兵文章一样,本文表达的观点仅代表作者的观点,不代表国防部、美国陆军或其任何部门的官方立场。
处理这些数据以影响飞机运行的航空电子系统。商用无人机系统经常依赖商用现货和开源航空电子组件和数据源,而这些组件和数据源的可靠性和完整性很难得到保证。为了减轻不符合传统航空安全标准的飞机的故障事件,监管机构通常会规定操作限制。《联邦航空条例》第 107 部分就是减轻小型无人机系统风险的操作限制的一个很好的例子。然而,这些限制限制了该行业的增长可能性。实现所有类型无人机常规运行的任何合理途径都必须解决航空电子系统(尤其是其软件)的保证需求。本文讨论了战略性地使用保证系统作为无人机常规运行的垫脚石的可能性。一个称为 Safeguard 的保证地理围栏样本系统被描述为这种垫脚石的一个例子。
在仪表进近着陆场景中对无人机进行视觉检测。本研究旨在更好地了解人为因素对飞行员在进近和着陆环境中检测和避免与小型无人机系统发生潜在碰撞冲突的影响。作者试图检查飞行员在模拟仪表进近的视觉部分对可能造成碰撞风险的 sUAS 飞行器的平均视觉检测距离。本研究是一系列有关 sUAS 检测、可见性和防撞的相关现场实验中的第三个(Loffi、Wallace、Jacob 和 Dunlap,2016 年;Wallace、Loffi、Vance、Jacob、Dunlap 和 Mitchell,2018 年)。作者试图为飞行员制定操作策略,以提高在国家空域系统中运行的小型无人机的可见性、检测和防撞能力。