回报。使用武器需要准确识别敌方目标。美国空军增强型识别和传感激光雷达 (ERASER) ATD 旨在通过使用主动激光技术改进空中和地面目标的机载识别过程。该项目将集中于将 ERASER 激光和信号处理技术集成到试验机上进行飞行演示。ERASER 提供的目标识别将补充作战人员整体识别套件中的其他识别源。ERASER 将结合为地面目标识别开发的 2D 激光成像技术和 CID 算法。美国空军还将使用合成孔径和高距离分辨率技术改进空对地雷达成像 (AGRI) 战术雷达识别能力。海军打算开发一种利用多种目标信息源(合作和非合作)的复合 CID 能力。除了空军正在实施的 ERASER 和 AGRI 方法外,还有针对其他传感器模式(被动和主动)的相关自动目标识别 (ATR) 计划正在研究中;特别是替代合成孔径雷达 (SAR) ATR、特定发射器识别、精密电子支持测量和固态激光振动传感。美国海军非合作空中目标识别计划将演示基于多普勒的成像过程,以提供空中目标类别估计。美国海军沿海监视/移动目标识别计划将提供小型飞机成像的演示。美国海军激光 CID 项目使用激光测振、高距离分辨率 1D 剖面、2D 轮廓提取和依赖于优化激光源照射时独特目标反射率特征的技术。根据此 DTO,表面目标 ID 的退出标准是声明概率为 85%,识别置信概率为 98%。
邀请领先的政府实验室、大学和航空航天制造商提供他们最近的航空疲劳研究活动的摘要。本报告包含已提交的贡献。有关特定文章的询问应联系该文章中署名的人员。在此感谢每个参与组织的慷慨贡献。政府 • FAA 飞机认证服务 • FAA 小型飞机理事会 • FAA 小型飞机标准处 • FAA 运输标准处 • FAA William J. Hughes 技术中心 • NASA 约翰逊航天中心 • 桑迪亚国家实验室 • 美国 • 美国空军生命周期管理中心 – A-10 ASIP • 美国空军生命周期管理中心 – A-10 结构/航空部门 • 美国空军生命周期管理中心 – C-5 ASIP • 美国空军生命周期管理中心 – F-16 ASIP • 美国空军生命周期管理中心 – F-22 ASIP • 美国空军生命周期管理中心 – F-22 项目办公室 • 美国空军生命周期管理中心 – F-35 联合项目办公室 • 美国空军生命周期管理中心 – 希尔空军基地 • 美国空军生命周期管理中心 – KC-46 ASIP • 美国空军生命周期管理中心 – 成熟和成熟的飞机部门 • 美国空军生命周期管理中心 – NDI 项目办公室 • 美国空军生命周期管理中心 – 罗宾斯空军基地腐蚀办公室 • 美国空军生命周期管理中心 –旋翼机 ASIP • 美国空军生命周期管理中心 – T-38 ASIP • 美国空军生命周期管理中心 – 赖特帕特森空军基地 • 美国空军研究实验室 – 航空航天系统理事会 • 美国空军研究实验室 – 材料与制造理事会 • 美国空军支持中心 – 希尔空军基地 NDI 项目办公室 • 美国空军支持中心 – 罗宾斯空军基地 NDI 项目办公室 • 美国空军支持中心 – 廷克空军基地 NDI 项目办公室 • 美国海军 – 海军研究实验室 • 美国海军 – NAVAIR
前言 本指南旨在帮助通用航空 (GA) 飞行员,特别是那些气象飞行经验相对较少的飞行员,培养获取适当气象信息、在特定飞行中解读数据以及应用信息和分析做出安全气象飞行决策的技能。 本指南是在多位气象专家、航空研究人员、空中交通管制员以及通用航空教练和飞行员的协助和贡献下开发的。 特别感谢美国联邦航空管理局民航医学研究所 (CAMI) 的 Dennis Beringer 博士和 William Knecht 博士;内华达大学里诺分校心理学和生物医学工程系的 Michael Crognale 博士;伊利诺伊大学航空研究所的 Douglas Wiegmann 博士;美国国家航空航天局艾姆斯研究中心的 BL Beard 博士和 Colleen Geven;中田纳西州立大学的 Paul Craig 博士;小型飞机制造商协会的 Paul Fiduccia;SJFlight 的 Max Trescott;Aero-Tech Inc. 的 Arlynn McMahon;塞斯纳飞行员中心 Roger Sharp;杰普森-桑德森公司的 Anthony Werner 和 Jim Mowery;马纳萨斯航空中心的 Howard Stoodley;丹·胡弗特;美国联邦航空管理局人为因素研究与工程科学技术顾问 Lawrence Cole;美国联邦航空管理局空中交通管制员、丹佛 ARTCC 的 Ron Galbraith;美国联邦航空管理局通用航空认证和运营处的 Michael Lenz、美国联邦航空管理局事故调查办公室的 Christine Soucy;美国联邦航空管理局飞行标准服务部工程心理学家 Rich Adams 博士;以及美国联邦航空管理局人为因素研究与工程科学技术顾问 William K. Krebs 博士。本指南旨在成为一份动态文件,其中包含来自像您这样的通用航空飞行员和教练的评论、建议和最佳实践想法。请将评论和想法发送至:susan.parson@faa.gov。祝您飞行愉快、安全!
1. Ronald C Merrell、Alice Lee、S Yunkap Kwankam、Beatrice Mwape、Collins Chinyama、Rifat Latifi、Marius-Ioan Piso、Florin Serban:卫星在发展中国家远程医疗中的应用。《远程医疗与远程保健杂志》 09/2006;12(6):321-324.,DOI:10.1258/135763306778558105 2. D. Andreescu、MI Piso、M. Niţă:空间科学和技术教育的研究生培训。《空间研究进展》 12/1997; 20(7-20):1375-1378., DOI:10.1016/S0273-1177(97)00732-1 3. C. Oprişiu、MI Piso、DD Prunariu:作为空间应用教育工具的小型飞机。空间研究进展 12/1997; 20(7-20):1361-1364., DOI:10.1016/S0273-1177(97)00730-8 4. Marius Trusculescu、Mugurel Balan、Claudiu Dragasanu、Alexandru Pandele、Marius-Ioan Piso:纳米卫星:地球观测和近地环境监测工具。地球观测,01/2012:第 25-40 页; InTech.,ISBN:978-953-307-973-8,DOI:10.5772/28445 5. Catalin Cucu-Dumitrescu、Marius-Ioan Piso:编队飞行通过测地线运动和不同的几何要求。为北约军事行动提供天基作战支援的新兴和未来技术,RTO-MP-RTB-SPSM 编辑,2006 年 1 月:第 1-1 至 1-13 页;RTO,法国讷伊,DOI:10.13140/RG.2.1.4131.9441 6. I. Stroe、DD Prunariu、MI Piso、GV Manciu:大型物体移除系统的动力学。第三届欧洲空间碎片会议论文集,第 1 和第 2 卷,由 SawayaLacoste、H 编辑,09/2001:第 713-716 页;欧洲空间局,ESA SP-587,2005 年,ISBN:92-9092-733-X 7. MI Piso、DD Prunariu:中东欧和东南欧空间科学技术能力建设机构网络。北约科学技术管理高级研究研讨会,由 AT Balaban、EN Carabateas、FT Tanasescu 编辑,01/1997;北约科学技术管理。
前言 本指南旨在帮助通用航空 (GA) 飞行员,特别是那些气象飞行经验相对较少的飞行员,培养获取适当气象信息、在特定飞行中解读数据以及应用信息和分析做出安全气象飞行决策的技能。 本指南是在多位气象专家、航空研究人员、空中交通管制员以及通用航空教练和飞行员的协助和贡献下开发的。 特别感谢美国联邦航空管理局民航医学研究所 (CAMI) 的 Dennis Beringer 博士和 William Knecht 博士;内华达大学里诺分校心理学和生物医学工程系的 Michael Crognale 博士;伊利诺伊大学航空研究所的 Douglas Wiegmann 博士;美国国家航空航天局艾姆斯研究中心的 BL Beard 博士和 Colleen Geven;中田纳西州立大学的 Paul Craig 博士;小型飞机制造商协会的 Paul Fiduccia;SJFlight 的 Max Trescott;Aero-Tech Inc. 的 Arlynn McMahon;塞斯纳飞行员中心 Roger Sharp;杰普森-桑德森公司的 Anthony Werner 和 Jim Mowery;马纳萨斯航空中心的 Howard Stoodley;丹·胡弗特;美国联邦航空管理局人为因素研究与工程科学技术顾问 Lawrence Cole;美国联邦航空管理局空中交通管制员、丹佛 ARTCC 的 Ron Galbraith;美国联邦航空管理局通用航空认证和运营处的 Michael Lenz、美国联邦航空管理局事故调查办公室的 Christine Soucy;美国联邦航空管理局飞行标准服务部工程心理学家 Rich Adams 博士;以及美国联邦航空管理局人为因素研究与工程科学技术顾问 William K. Krebs 博士。本指南旨在成为一份动态文件,其中包含来自像您这样的通用航空飞行员和教练的评论、建议和最佳实践想法。请将评论和想法发送至:susan.parson@faa.gov。祝您飞行愉快、安全!
前言 本指南旨在帮助通用航空 (GA) 飞行员,特别是那些气象飞行经验相对较少的飞行员,培养获取适当气象信息、在特定飞行中解读数据以及应用信息和分析做出安全气象飞行决策的技能。 本指南是在多位气象专家、航空研究人员、空中交通管制员以及通用航空教练和飞行员的协助和贡献下开发的。 特别感谢美国联邦航空管理局民航医学研究所 (CAMI) 的 Dennis Beringer 博士和 William Knecht 博士;内华达大学里诺分校心理学和生物医学工程系的 Michael Crognale 博士;伊利诺伊大学航空研究所的 Douglas Wiegmann 博士;美国国家航空航天局艾姆斯研究中心的 BL Beard 博士和 Colleen Geven;中田纳西州立大学的 Paul Craig 博士;小型飞机制造商协会的 Paul Fiduccia;SJFlight 的 Max Trescott;Aero-Tech Inc. 的 Arlynn McMahon;塞斯纳飞行员中心 Roger Sharp;杰普森-桑德森公司的 Anthony Werner 和 Jim Mowery;马纳萨斯航空中心的 Howard Stoodley;丹·胡弗特;美国联邦航空管理局人为因素研究与工程科学技术顾问 Lawrence Cole;美国联邦航空管理局空中交通管制员、丹佛 ARTCC 的 Ron Galbraith;美国联邦航空管理局通用航空认证和运营处的 Michael Lenz、美国联邦航空管理局事故调查办公室的 Christine Soucy;美国联邦航空管理局飞行标准服务部工程心理学家 Rich Adams 博士;以及美国联邦航空管理局人为因素研究与工程科学技术顾问 William K. Krebs 博士。本指南旨在成为一份动态文件,其中包含来自像您这样的通用航空飞行员和教练的评论、建议和最佳实践想法。请将评论和想法发送至:susan.parson@faa.gov。祝您飞行愉快、安全!
前言 本指南旨在帮助通用航空 (GA) 飞行员,特别是那些气象飞行经验相对较少的飞行员,培养获取适当气象信息、在特定飞行中解读数据以及应用信息和分析做出安全气象飞行决策的技能。 本指南是在多位气象专家、航空研究人员、空中交通管制员以及通用航空教练和飞行员的协助和贡献下开发的。 特别感谢美国联邦航空管理局民航医学研究所 (CAMI) 的 Dennis Beringer 博士和 William Knecht 博士;内华达大学里诺分校心理学和生物医学工程系的 Michael Crognale 博士;伊利诺伊大学航空研究所的 Douglas Wiegmann 博士;美国国家航空航天局艾姆斯研究中心的 BL Beard 博士和 Colleen Geven;中田纳西州立大学的 Paul Craig 博士;小型飞机制造商协会的 Paul Fiduccia;SJFlight 的 Max Trescott;Aero-Tech Inc. 的 Arlynn McMahon;塞斯纳飞行员中心 Roger Sharp;杰普森-桑德森公司的 Anthony Werner 和 Jim Mowery;马纳萨斯航空中心的 Howard Stoodley;丹·胡弗特;美国联邦航空管理局人为因素研究与工程科学技术顾问 Lawrence Cole;美国联邦航空管理局空中交通管制员、丹佛 ARTCC 的 Ron Galbraith;美国联邦航空管理局通用航空认证和运营处的 Michael Lenz、美国联邦航空管理局事故调查办公室的 Christine Soucy;美国联邦航空管理局飞行标准服务部工程心理学家 Rich Adams 博士;以及美国联邦航空管理局人为因素研究与工程科学技术顾问 William K. Krebs 博士。本指南旨在成为一份动态文件,其中包含来自像您这样的通用航空飞行员和教练的评论、建议和最佳实践想法。请将评论和想法发送至:susan.parson@faa.gov。祝您飞行愉快、安全!
过去 50 年来,风洞已广泛应用于工业和研究领域。它们的规模和几何形状差异很大,有些大到足以容纳和测试小型飞机(例如 NASA、ATP 设施),而另一些则是用于校准小型传感器的微型气流发生器。但是,它们总是使用相同的基本技术和设计元素。同样,环境模拟器也在研究中得到广泛应用,例如在气候和行星研究中。在这里,它们在尺寸和配置上再次存在很大差异,但基本上由具有某种形式的温度控制的密封室组成 [Jensen 等人2008]。因此,在风洞和环境模拟器设计领域已成功应用了各种标准且通常是商业化的技术和施工技术。本章将概述其中一些技术和方法,以帮助研究人员或技术开发人员设计或使用环境风洞,同时也为这些研究领域的新手提供信息指南。环境模拟器和风洞的融合是基于实验室技术的自然演变,以满足重现自然界中特定物理条件的需求。虽然这种设施现在才刚刚得到充分开发,但它们有可能扩展到一个新的研究领域,这可能对我们了解气候做出重大贡献,并促进先进传感器技术的发展。本章将介绍设计和建造环境风洞的许多挑战,并提出可能的解决方案,重点放在极端陆地和火星行星条件上。此外,还将讨论许多不同的科学和工业应用。一般而言,环境风洞目前已用于测试和校准各种气象传感器,尤其是风流传感器(风速计)。风洞在土木工程和城镇规划中的应用正变得越来越普遍。在这里,通过风洞模拟和建模建筑物周围和建筑密集区域的气流可能有助于避免在大风或暴风雨期间产生高风切变和危险涡流。此类模拟还可以帮助设计和放置风力发电系统(例如风力涡轮机)。雷诺方程开发的形式化缩放定律允许进行测量,例如在较小规模的实验室风洞中,其产生与自然环境中产生的相同(或极其相似)的流动 [Monin 和 Yaglom
在担任高级技术专家的工作之前,阿什福斯女士是FAA运输局的国际分支机构计划经理。她的专业经验还包括Epic Aircraft,Maxviz Inc.,Lancair Company,自然资源研究所,McCauley配件部和美国空军研究实验室的工作。阿什福斯女士获得了学士学位威斯康星大学 - 麦迪逊大学的工程机制和硕士学位 赖特州立大学的材料科学与工程学。威斯康星大学 - 麦迪逊大学的工程机制和硕士学位赖特州立大学的材料科学与工程学。
空中空间技术演示2(ATD-2)国家航空航天局(NASA)团队与FAA和工业合作,继续为其在北德克萨斯州地区的最后3阶段现场评估做准备。ATD-2团队不再能够物理访问现场设施,因此已经过渡到远程培训和桌面练习,并通过虚拟平台制作了许多专门为每个现场用户设计的视频。另外,还要提供更大量的轨迹选项集(TOS)评估机会,如果持续交通量降低,ATD-2团队将系统部署到新的航空公司运营商中,为飞行操作员定义了其他用例,以增加TOS请求,并为替代ATC用户提高TOS Advisovals的新能力而开发了一种新的能力。NASA计划在2021年9月之前将最终技术转移到FAA和行业。