尚未证明卷积神经网络在合理的计算和性能成本下对对抗性扰动非常强大。灵长类动物的视觉腹流似乎对视觉刺激中的小扰动是可靠的,但是引起这种强大感知的基本机制尚不清楚。在这项工作中,我们研究了两个生物学上合理的机制在对抗鲁棒性中的作用。我们证明,灵长类动物视网膜进行的非均匀采样以及在每个偏心率下具有一系列接受型尺寸的多个接受场的存在,可以改善神经网络对小型对抗性扰动的稳健性。我们验证了这两种机制不会遭受梯度混淆,并通过消融研究研究了它们对对抗性鲁棒性的贡献。
摘要随着脑机接口 (BCI) 的最新进展,脑电图 (EEG) 分析得到了各个领域的广泛研究关注。了解 EEG 分析的弱点对于在日常生活中安全地应用这项新兴技术非常重要。最近的研究表明,在 EEG 数据上添加小扰动时,EEG 分析容易受到对抗性攻击。然而,对于在仅攻击一小部分数据的稀疏扰动下 EEG 分析的稳健性的研究较少。在本文中,我们首次深入研究了稀疏扰动下 EEG 分析的稳健性,并提出了第一个稀疏对抗性 eeG 攻击 SAGA,以识别 EEG 分析的弱点。具体而言,通过将 EEG 数据视为从多个通道收集的时间序列,我们设计了一个自适应掩码来统一表示对抗性攻击中的不同稀疏性。我们进一步引入了基于 PGD 的迭代求解器,在给定的稀疏性约束下自动选择时间步长和通道,并有效地识别 EEG 数据上的对抗性示例。大量实验表明,SAGA 可以有效地生成稀疏扰动,并且仅通过扰动 5% 的通道和时间步长就平均导致准确率下降 77.02%。
垂直起降(VTOL)是无人机(UAV)的基本功能。VTOL一方面可以拓展和增强无人机的应用领域,但另一方面也使得无人机控制系统的设计更加复杂。控制系统设计中最具挑战性的需求是实现固定翼无人机对控制指令满意的响应敏锐度以及确保飞机模态通道有效解耦。本文在气动分析的基础上,建立了含有力和力矩的六自由度(6-DoF)模型,并通过计算流体力学(CFD)数值模拟进行气动分析。提出一种基于扩张状态观测器(ESO)的改进比例微分(PD)控制器来设计内环姿态控制,增强了无人机系统对内外部不确定性的抗干扰能力。建立无人机运动方程,将运动方程分解为纵向和横侧两个独立运动分量,设计小扰动条件下的外环控制律;提出一种纵向高度通道总能量控制系统(TECS),将速度控制与航迹控制分离;横侧轨迹跟踪采用L1非线性路径跟踪制导算法,提高曲线跟踪能力和抗风能力。实飞实验数据证明了该方法的有效性。最后,设计了一种控制律。
着舰过程最后20秒风险较大,主要是因为舰载空气尾流强烈。据统计,1964年美国舰载着舰事故率白天为0.031%,夜间仅为0.1%,大大超过陆基着舰事故率[8]。另外,考虑到舰载机纵轴与着陆甲板纵轴呈9度左右夹角,飞机需要有一个横向速度来补偿舰载机的横向运动,此时侧滑角β也不为零。在小扰动条件下,对飞机动力学和运动学方程进行线性化,发现纵向和横向变量存在较强的耦合,表明在着舰最后阶段分别采用纵向控制环和横向控制环进行控制并不是有效的方式。飞行器的部分动力学和运动学方程可以写成公式1的形式,这是非线性系统的一种表达。处理非线性系统时,动态逆是一种常用的方法。它可以避免复杂的参数设定和增益调整。只要知道系统的精确数学模型,就可以应用动态逆进行控制[7, 10]。在准确了解飞行器动力学和运动学方程的情况下,动态逆是一种可行的飞行控制方法。( ) ( ) ( )
TS 模式也可以不采用蛇形线来表示对应于整数自旋共振 γG = k 的离散能量值。这里 γ 是相对论因子,G 是旋磁比的异常部分。对于质子,这样的能量值数量为 25,能量步长为 0.523 GeV。对于氘核,只有一个点,总能量为 13.1 GeV。在理想的对撞机晶格中,自旋运动会退化:任何轨道位置的任何自旋方向都会在每次粒子转动时重复。这意味着 TS 模式下的自旋调谐为零,粒子处于 TS 共振状态。在这种情况下,自旋运动对磁场的微小扰动高度敏感,这些扰动与晶格缺陷以及回旋加速器和同步加速器粒子的振荡有关。在实际情况下,自旋简并被消除,因为极化沿着由对撞机晶格缺陷决定的未知方向变得稳定。极化控制由自旋导航器提供,自旋导航器是基于弱螺线管的设备,可在 SPD 相互作用点设置所需的极化方向。导航器对自旋的影响应大大超过小扰动场的影响 [4]。TS 模式下的极化控制方案如图 3 所示。两个对称放置在 SPD 周围的自旋导航器用于稳定 SPD 垂直平面上所需的极化方向(Ψ 是极化和粒子速度矢量之间的角度)[3]。
我们如何表征量子混乱?在各种不同的方法中(参见参考文献1以进行审查),目前有两个不同的标准。第一个是能量谱的随机矩阵样的普遍性[2,3]:如果能量谱由高斯随机矩阵理论描述,则给定的量子系统是混乱的,我们只需用RMT表示[4-6]。第二个是对初始条件的敏感性:如果给定的量子系统在这个意义上是混乱的,如果它表现出指数级别的lyapunov的生长,则小扰动的小扰动生长,如超时阶 - 超顺序相关函数(OTOC)[7,8]。OTOC与Loschmidt回声密切相关,该回声也探测了混乱[9]。这些标准有几个不令人满意的特征。首先,目前尚不清楚这两个标准如何相关。第二,量子标准与经典混乱的特征的联系尚不清楚。可能会说,对初始条件的敏感性可以表征经典和量子混乱,但是局部量子系统存在问题。在古典理论中,最初的扰动可以任意地从数学意义上讲,并且指数级的增长可以永远继续下去。另一方面,在量子系统中,由于不确定性原理,扰动不能完全较小,并且局部量子系统通常不会显示指数级的增长,除非在特殊的限制下[10-14] [15]。因此,基于OTOC的早期生长的表征对通用局部量子系统不起作用。在上一篇论文[16]中,我们概括了上述单一混乱指数以定义量子lyapunov指数。基于Sachdev-Ye-Kitaev(SYK)模型和自旋链(XXZ)模型的计算,我们提出,Lyapunov指数如此定义的指数表现出普遍的行为:Lyapunov Spectrum Spectrum与RMT在系统中时同意RMT。量子混乱的这种表征避免了通用局部系统缺乏指数增长的问题,因为一个人只需要指数的统计特性,而不是其详细的增长为 -
本文介绍了一种新型,可调且高效的金属 - 绝缘体 - 金属(MIM)等离子体设备的设计和数值研究,专为近红外(NIR)应用而设计。该设备在MIM波导中策略性地放置了策略性的存根谐振器。我们引入了两个小扰动,一个三角形和一个矩形,以实现出色的功能多功能性。采用有限元方法(FEM)并通过传输线方法(TLM)验证的综合数值分析证明了这两种方法之间的工作原理和出色的一致性。我们的模拟驱动方法,uti液化了遗传算法(GA)进行加速优化,对于通过纯粹的实验方法实现性能水平很难或昂贵,至关重要。GA启用了庞大的参数空间的有效探索,设备配置的迭代细化以及几何特征的微调。这种细致的优化使我们能够控制模拟结构中的复杂相互作用。提出的设备基于调整后的几何参数提供不同的功能,包括:A。平坦的带通滤波:在420 nm×540 nm的紧凑型足迹中,达到最大传输效率为95.8%。B.双波段带通滤波:在稍大的450 nm×540 nm尺寸的情况下,保持高传输效率为88.4%。C.三波段缺口滤波:在特定的共振波长中显示最小传输(低于1%),以进行靶向信号抑制。D.等离子体诱导的透明度(PIT)效应:在各种光学功能中提供潜在的应用。和E.完美的吸收:达到99.62%的最大吸收效率,为有效的光收集和操纵铺平了道路。这种多功能等离子设备的紧凑性,可调性和不同的NIR功能性的结合。它对小型化的光学组件,集成光子电路和高级光 - 物质相互作用有希望。我们的发现对紧凑,高效且易于制造的光子技术的发展产生了重大贡献。
非线性动态逆是针对大迎角机动问题研究最多的非线性控制技术。非线性动态逆是一种基于系统动力学逆的反馈线性化方法 [1]。通常,飞机动力学可分为两类:慢速动力学和快速动力学,F-16 也不例外。慢速动力学对于固定翼飞机是相同的,可以使用风轴微分方程推导。另一方面,快速动力学对于每架飞机都是独一无二的,在推导飞机的快速动力学时必须包括空气动力学数据库。本文使用了基于 NASA 兰利和艾姆斯研究中心的 F-16 风洞试验结果的亚音速气动数据库 [1]。该数据库适用于 和每种飞行条件。因此,它是在大攻角区域测试新开发的控制律的合适平台。在 Simulink 环境中开发了 F-16 的 6 自由度数学模型。数学模型包括气动数据库、发动机模型、大气方程和运动方程 [3]、[4]。开发了平飞、爬升、下降和稳定平转飞行条件下的配平算法 [5]。此外,还基于小扰动理论推导出了线性化算法 [6]。为了比较非线性动态逆控制律和线性控制律的性能,设计了横向和纵向运动的线性控制增强系统。采用特征结构分配技术综合了线性控制律。纵向控制器是一种简单的迎角控制指令系统,使用 F-16 飞机的短周期动力学设计而成。横向控制器是一种侧滑和稳定轴滚转速率指令系统,使用 F-16 飞机的线性化横向稳定轴方程设计而成。线性控制器的设计过程最终根据高度和速度安排增益矩阵,以实现全包络有效飞行控制律。使用预定义的大迎角机动对线性和非线性飞行控制律进行了比较。这种机动被定义为快速且同时的俯仰和滚转运动。虽然拉起运动在迎角和之间变化,但滚转运动在倾斜角保持恒定。随着攻角的增大,纵向和侧向动力学无法分离,因此增益调度线性控制器和非线性动态逆控制器的机动能力变得重要。
神经退行性疾病是由细胞和神经元在大脑和周围神经系统的功能丧失引起的疾病,包括阿尔茨海默氏病(AD),帕金森氏病(PD),杏仁核外侧硬化症(ALS)以及额叶摄取症状(FTD)和其他。由于对神经退行性疾病的病理机制不完全理解,目前可用的治疗方法只能减轻某些相关症状,并且仍然缺乏有效的治疗方法。大多数神经退行性疾病具有常见的细胞和分子机制,这是淀粉样蛋白样蛋白聚集体和包含体的形成。神经退行性疾病中蛋白质聚集体的广泛存在表明它们在疾病发生和进展中的特殊作用。长期以来,成核和聚集被认为是蛋白质骨料形成的唯一途径。然而,最近的研究表明,这些蛋白可能会经历另一个聚集过程,即液相分离介导的聚集。相分离是生物分子通过弱的多价相互作用形成动态凝结的过程。在这些冷凝物中,生物分子浓度高度富集,并且仍然与外部环境保持动态交换。相分离是由弱的多价相互作用(例如静电,π相关,氢键和疏水相互作用)介导的。对于特定分子,它们的相分离行为可能主要由一个或某些相互作用介导。但是,生活系统中的相互作用更为复杂。有很多工作着眼于在各种系统中做出重大贡献的相互作用类型。这些发现可能有助于我们进一步了解序列上的小扰动者如何改变相位分离行为,以及为什么自然发生的突变会产生重要的生理和生物物理效应。在活生物体中进行相分离的蛋白质通常包含本质上无序的区域(IDR)或本质上无序的蛋白质(IDP)。淀粉样蛋白通常具有这种特征。这样的IDR/ IDP没有稳定的折叠结构,并且以动态形式存在于解决方案中。由于缺乏清晰的三维结构,IDR/IDP具有更高的动力和灵活性,因此为分子间接触和相互作用提供了更多机会。近年来,研究人员表明,许多神经退行性疾病与淀粉样淀粉样蛋白样蛋白可以进行相分离,这表明淀粉样蛋白样蛋白和病理学的相行为之间存在潜在的关联。在这里,我们总结了有关几种神经退行性疾病相关的淀粉样蛋白的相分离和聚集的最新研究,包括Aβ,TAU,α-突触核蛋白,TDP-43和SOD1。它们是与神经退行性疾病相关的典型病理蛋白,并且已被证明与过去几十年中相关疾病具有很高的相关性。他们的共同特征是患者中发现的淀粉样蛋白聚集体。最近的研究表明,它们也具有相分离的特性,这可能与病理聚集体的形成相关。因此,我们总结了这些淀粉样蛋白的相位行为的最新研究,这可能带来调节相关病理过程和治疗疾病的潜在机会。我们希望本文可以帮助加深对神经退行性疾病中蛋白质的病理机制的理解,并激发疾病治疗的新思想。
使用量子特征进行参数估计的量子计量学最近引起了人们的注意,因为它可以胜过任何基于资源的经典测量方案[1-8]。尽管可以实现令人印象深刻的精确提高,但只有在优化协议的各个步骤时才能达到最终性能[4,9,10]。标准过程通常考虑最初以最佳初始状态制备的系统的自由演变。但是,在许多示例中,这种方法还不够,并且必须通过外部控制修改系统动力学,以实现给定实验约束的最高精度。控制设计通常由最佳控制理论(OCT)执行,该理论证明了其在许多量子应用中的有效性[6,11-14]。到目前为止,已经提出了不同的解决方案,以定义最佳控制问题。它们在固定的最后时间示意性地差异以最大化(或最小化)。除其他外,我们可以提到量子渔民信息(QFI)[10,15–30],选择性控制方案[31-39]和指纹识别方法[40-43]的最大化。QFI基于与量子系统结合的cram'er-rao的概括[9,44,45]。对于纯状态,QFI与特定可观察的特定可观察的方差成正比,该方差与哈密顿量的部分衍生物相对于参数进行估计。通过最大化此数量,我们确保参数的小扰动会引起对系统动力学的显着修改,因此,这使我们能够减少测量过程中造成的误差。对于QFI,该信息在参数空间中是本地的,并且在控制问题的定义中没有明确的目标量子状态。本质上非本地的选择性控制过程并非如此。可以将它们视为以不同参数值为特征的系统的不同副本的同时状态对状态控制协议[33,34,36,46-46-50]。选择性控制已广泛用于核磁共振中[51-55]。在此框架中,目标是找到一个控制系统的控件,以达到系统的每个副本,以达到(可能尽可能快)的目标状态,并专门选择目标状态以最大程度地减少测量误差。指纹方法更加详尽,并结合了来自QFI和选择性协议的想法[40-43]。没有特定的目标状态,但目标是最大化一个或几个可观察到的时间演变之间的距离。在这种情况下,考虑了整个动态,而不仅仅是最终系统配置[43]。除了给定优点的最大化外,还可以包括其他约束来分析这些问题,例如控制时间或能量的最小化[56-59]。可以通过这些方法独立地获得不同的控制策略,例如,用于自旋系统的参数估计。自然出现的一个问题是在哪些条件下这些控制方案是等效的,更一般而言,不同技术之间的优点,相似性和差异。本文旨在朝这个方向迈出一步。据我们所知,只有指纹方法已短暂地连接到[60,61]中的Fisher信息,但是QFI和选择性方案之间的关系仍未得到探索。为了简化分析,我们专注于链接
