摘要:背景:II 型黄嘌呤尿症是一种罕见的常染色体嘌呤疾病。这种隐性嘌呤代谢缺陷仍是一种未被充分认识的疾病。方法:我们培育出钼辅因子硫化酶 (Mocos) 基因被靶向破坏的小鼠,以便全面了解嘌呤疾病,并评估这种基因的病理生理功能,该基因存在于大量通路中,并且已知与自闭症有关。结果:缺乏 Mocos 的小鼠在 4 周龄内死于明显的阻塞性肾病肾衰竭,表现为黄嘌呤尿、黄嘌呤沉积、囊性小管扩张、Tamm Horsfall(尿调节蛋白)沉积、中性粒细胞坏死和偶尔出现的肾积水和尿石症。阻塞性肾病与中度间质炎症和纤维化反应、贫血、解毒系统减弱以及嘌呤、氨基酸和磷脂代谢的重大改变有关。相反,表达减少的 MOCOS 蛋白的杂合小鼠是健康的,没有明显的病理。结论:缺乏 Mocos 的小鼠会患上致命的阻塞性肾病,并伴有深刻的代谢变化。研究 MOCOS 功能可能为黄嘌呤尿症和其他需要早期诊断的疾病的潜在发病机制提供重要线索
PH1 是一种罕见的常染色体隐性遗传病,每百万人中估计有 1 至 4 人患有此病,大多数患者在确诊时为儿童或年轻人。PH1 是由丙氨酸乙醛酸转氨酶 (AGXT) 基因突变引起的,该基因编码一种关键代谢酶,负责在肝脏中将乙醛酸转化为甘氨酸。无法将乙醛酸代谢为甘氨酸会导致全身性草酸过量产生,从而导致肾脏中形成不溶性草酸钙晶体。这些草酸钙晶体会导致肾结石形成、肾衰竭,并进一步影响肝脏、心脏和其他器官。ARCUS 核酸酶具有多种有利于治疗应用的特性,包括一种单组分蛋白质,既包含位点特异性 DNA 识别界面,又包含核酸内切酶活性。将底物识别和催化基序组合成单一蛋白质,既可用于病毒传递方式,也可用于非病毒传递方式,并通过蛋白质工程不断提高活性和特异性。为了确定 ARCUS 基因编辑是否可用于降低 PH1 患者的全身草酸水平,ARCUS 核酸酶被设计用于靶向和破坏编码羟基酸氧化酶 1 (HAO1) 的 HAO1 基因,HAO1 也称为乙醇酸氧化酶 (GO),是代谢途径中负责将乙醇酸转化为乙醛酸的上游酶。通过抑制乙醛酸的形成,草酸的产生应被最小化。
酮尿症和糖尿病性酮症酸中毒:32(32)猫出现了酮尿症,糖尿病性酮症酸中毒或Euglycemic糖尿病性酮症酸中毒,并从研究中清除。这些猫中有26(26)在接受Senvelgo治疗后的前7天内出现了酮尿症,糖尿病性酮症酸中毒或Euglycemic糖尿病性酮症酸中毒。这些猫中的十三(13)个发展出酮尿症,而没有进一步发展为糖尿病性酮症酸中毒或尤利科血糖酮症酸中毒,并过渡到胰岛素。另外13(13)个猫会出现糖尿病性酮症酸中毒或葡萄糖酮症酸中毒。住院和强化治疗后康复的九只猫。这9只猫中有三只具有同时疾病:肝病(1),肝脂肪变性(1),胰腺炎和肝脂性病(1)。13只猫中有四只被安乐死;三个是因为业主在不回应住院和强化治疗后拒绝治疗,一只猫被安乐死了。
酮尿症和糖尿病性酮症酸中毒:32(32)猫出现了酮尿症,糖尿病性酮症酸中毒或Euglycemic糖尿病性酮症酸中毒,并从研究中清除。这些猫中有26(26)在接受Senvelgo治疗后的前7天内出现了酮尿症,糖尿病性酮症酸中毒或Euglycemic糖尿病性酮症酸中毒。这些猫中的十三(13)个发展出酮尿症,而没有进一步发展为糖尿病性酮症酸中毒或尤利科血糖酮症酸中毒,并过渡到胰岛素。另外13(13)个猫会出现糖尿病性酮症酸中毒或葡萄糖酮症酸中毒。住院和强化治疗后康复的九只猫。这9只猫中有三只具有同时疾病:肝病(1),肝脂肪变性(1),胰腺炎和肝脂性病(1)。13只猫中有四只被安乐死;三个是因为业主在不回应住院和强化治疗后拒绝治疗,一只猫被安乐死了。
患有囤积症 (HD) 的患者难以丢弃物品,并且倾向于囤积大量物品,无论其实际价值如何,使生活区变得杂乱无章 (Timpano 等人,2013)。囤积症状最初被认为是强迫型人格障碍的诊断标准或强迫症 (OCD) 的症状维度。然而,大多数患有强迫症的人并没有报告明显的囤积行为 (Pertusa 等人,2010),而患有 HD 的人通常不符合强迫症的其他症状标准 (Frost 等人,2012)。事实上,囤积和强迫症症状显示出较弱的相关性,在因子分析中,它们通常被归类为不同的维度 (Wu & Watson,2005)。因此,在《精神障碍诊断和统计手册》第五版(DSM-V)(APA,2013)中,强迫性囤积被视为强迫症谱系中的一种独立诊断。然而,HD 的病理生理学在很大程度上是未知的。大多数评估强迫性囤积神经相关性的研究都评估了强迫症患者的囤积症状(从维度角度)(Mataix-Cols 等人,2004 年;Harrison 等人,2013 年),或比较了有强迫性囤积和无强迫性囤积的强迫症样本(Saxena 等人,2004 年;An 等人,2009 年)。因此,它们不能代表没有表现出强迫症状的 HD 患者。只有最近的研究将没有强迫症的囤积者与健康对照者(HC)或没有囤积症状的强迫症患者进行了比较(Tolin 等人,2009 年,2012 年)。然而,这些研究使用的任务旨在在囤积相关决策(即丢弃物品)过程中触发复杂的情绪。因此,由于这些患者整体上缺乏激活,因此它们无法与强迫症进行有意义的比较(Tolin 等人,2012 年)。为了从神经生物学角度证实亨廷顿舞蹈症和强迫症之间的临床区别,重要的是比较两组患者在执行与强迫症病理生理相关的任务时的行为和大脑激活特征。认知控制不佳在强迫症的病理生理模型中起着重要作用,并被认为是该疾病的潜在内表型(Chamberlain 和 Menzies,2009 年)。抑制功能和注意力转换受损确实可能是强迫观念和强迫行为控制不佳的根本原因(Snyder 等人,2015 年)。已知这些执行功能由前额叶、顶叶和纹状体区域支持(Norman 等人,2016 年),这些区域在当前的强迫症神经生物学模型中处于核心地位,是皮质-纹状体-丘脑-皮质 (CSTC) 回路的一部分(Menzies 等人,2008 年;van den Heuvel 等人,2016 年)。此外,强迫症还具有过度绩效监控的特征,这可能是某些强迫症症状(例如重复检查)出现的原因(Harkin 等人,2012 年)。绩效监控与背外侧前额叶和前扣带皮层 (dlPFC 和 ACC) 有关 (Melcher 等人,2008),神经影像学研究一致报告称,在绩效监控期间,强迫症患者的 ACC 过度激活 (Melcher 等人,2008)。因此,评估这些神经认知领域的方案可以为进一步区分亨廷顿舞蹈症和强迫症提供启示。尽管如此,之前只有两项神经影像学研究重点比较了强迫症和亨廷顿舞蹈症之间执行功能障碍的神经相关性。第一项研究评估了 Go/No-Go 方案中的反应抑制和绩效监控 (Tolin 等人,2014),而第二项研究检查了这些相同的功能,还包括反应冲突任务 (即 Stroop) (Hough 等人,2016)。两项研究均未发现各组之间的绩效差异。在神经生物学层面,亨廷顿氏病患者在反应抑制过程中表现出与强迫症组相比明显的过度活跃,尽管研究结果的具体模式有所不同:从右中央前回的单个簇(Tolin 等人,2014 年)到
July 2024 (PDF) ( ICD-10 ) April 2024 (PDF) ( ICD-10 ) January 2024 (PDF) ( ICD-10 ) October 2023 (PDF) ( ICD-10 ) July 2023 (PDF) ( ICD-10 ) April 2023 (PDF) ( ICD-10 ) January 2023 (PDF) ( ICD-10 ) October 2022 (PDF) ( ICD-10 ) July 2022 (PDF) ( ICD-10 ) April 2022 (PDF) ( ICD-10 ) January 2022 (PDF) ( ICD-10 ) October 2021 (PDF) ( ICD-10 ) July 2021 (PDF) ( ICD-10 ) April 2021 (PDF) ( ICD-10 ) January 2021 (PDF) ( ICD-10 ) October 2020 (PDF) (ICD-10)2020年7月(PDF)(ICD-10)2020年4月(PDF)(ICD-10)2020年1月(PDF)(PDF)(ICD-10)(ICD-10)2019年10月(PDF)(ICD-10)(ICD-10)2019年7月(PDF)(PDF)(PDF)(ICD-10)(ICD-10)(ICD-10)(ICD-10)(2019年4月)(PDF)(PDF)(ICD)(ICD)(ICD)(ICD)(ICD)(ICD)(PDF)(PDF)(PDF)(PDF)(PDF)(PDF)(pdf)(pdf)(108) 2018年7月(PDF)(ICD-10)2018年4月(PDF)(ICD-10)2018年1月(ICD-10)2017年10月(ICD-10)(ICD-10)2017年7月(ICD-10)(ICD-10)2017年4月(ICD-10)(ICD-10)(ICD-10)2017年1月(ICD-10)(ICD-10)(ICD-10)2016年10月(ICD-10)(ICD-10)(ICD-10)
抽象的二维(2D)分层过渡金属的tellurides(Chalcogens)可以利用其表面原子的特征,以增强用于能量转换,存储和磁性应用的地形活动。每个纸的逐渐堆叠改变了表面原子的微妙特征,例如晶格膨胀,从而导致了几种现象和渲染可调的特性。在这里,我们评估了使用表面探针技术的2D Cote 2张2D COTE 2板和磁性行为的厚度依赖性力学特性(纳米级力学,摩擦学,潜在的表面分布,界面相互作用)。通过理论研究进一步支持并解释了实验观测:密度功能理论和分子动力学。理论研究中观察到的性质变化释放了COTE 2晶体平面的关键作用。所提出的结果有助于扩大在柔性电子,压电传感器,底机传感器和下一代内存设备中使用2D telluride家族的使用。