运输业是温室气体排放的重要来源,推动了向电动汽车的转变。然而,由于需要重型电池组,电动汽车的续航里程有限。减少这种重量的一种方法是通过多功能材料,例如层压结构电池 (SB),它将结构完整性与能量存储结合在一起。层压 SB 由嵌入多功能聚合物基质(称为结构电解质)的碳纤维组成。在这里,碳纤维提供结构支撑、充当电极和集电器,而结构电解质则实现离子传导和机械负载传递。本论文探讨了不同的结构电解质成分和加工条件如何影响多功能特性,重点是将它们集成到层压 SB 中。该研究证明了热引发聚合诱导相分离的有效性,可生产具有双连续聚合物-液体电解质(即结构电解质)的全电池层压 SB。这些电解质具有影响离子电导率和储能模量的多种形态,呈现出更安全、更环保的配方,并具有足够的结构电极性能。长期研究表明,结构电解质配方对结构电极性能有影响,以及在重复充电/放电下纤维基质粘附性会受到怎样的影响。最后,我们展示了一种最先进的 SB,在两个电极中都使用了纤维,实现了能量密度和机械性能之间的完美平衡。这项工作为 SB 技术的未来发展奠定了基础,确定了增强多功能性能的挑战和机遇。
HDI 印刷电路板 (PCB) 具有高密度属性,包括激光微孔、顺序层压结构、细线和高性能薄材料。这种增加的密度使单位面积上能够实现更多功能。先进技术 HDI PCB 具有多层铜填充堆叠微孔,从而形成允许更复杂互连的结构。这些复杂结构为当今高技术标准先进产品中的大引脚数、细间距和高速芯片提供了必要的布线和信号完整性解决方案。
异质材料的机械行为,例如薄 - LM微电动机械系统(MEMS)材料和先进的光谱材料,特别强调了层压结构构造。各向异性和晶体学弹性配方。组成部分的结构,特性和力学,例如lms,底物,活性材料,Bers和矩阵,包括纳米和微尺度成分。具有性特性。经典的层压板理论,用于建模结构行为,包括外在和内在菌株以及环境效果等应力。板和非线性(变形)板理论的屈曲简介。在建模异质材料(例如层压结构的断裂/故障)中进行建模的其他问题。B. L. Wardle,S-G。 KimB. L. Wardle,S-G。 Kim
本研究提出了一种设计,制造和测试先进的装甲保护系统的新方法,并应用于制定适合真实装甲车的三种不同保护解决方案。所提出的复合装甲溶液的背板层压板由三种不同的材料组成:钢,铝AA6082和铝合金AA2024由多壁碳纳米管(MWCNTS)增强。在这三个情况下,额叶层压板保持不变。在更改每个背板的材料并适应厚度时保持几乎相同的质量,对三种不同的保护系统进行了弹道测试,并根据标准AEP-Stanag 4569的4级(IV级)进行比较,并通过真实的军事测试对标准的AEP-Stanag 4569(弹丸14.5 mm×114 mm API B32)进行了比较。此外,根据变形和弹道骨折比较了总层压结构中总层压结构的性能和每个背板的性能。由高速相机获得的高质量图像有助于评估和比较背板和整个保护系统。结果表明,与常用的装甲系统相比,所有三种保护配置都具有高性能机械性能和弹道特性。即使发达的AA2024-CNT复合材料也是一种有希望的近期背板解决方案。
异质结构 (HS) 材料由于其多种微观结构和优异的物理性能而受到广泛研究[1 e 5]。它们由不同性质的软硬异质区组成,不同区域之间的协同效应可改善物理性能。HS 材料根据硬区形状可分为层状结构[6,7]、梯度结构[5,6,8,9]、层压结构[10 e 13]、双相 (或多相) 结构[14 e 19]和核壳结构[20 e 22]。十年来,另一种互连 (或互穿) 结构一直受到人们的关注。这种结构具有双连续的两个不同的区域,其中硬相和软相都是连续的且相互交错。这种独特的结构包括胞状结构(如螺旋状结构)和由旋节线分解形成的空间无序模式。双连续结构的软区和硬区在机械上互相约束。增材制造[23,24]和粉末冶金[25,26]已用于开发互连的HS材料。然而,这些方法在区域大小及其分布方面存在技术限制。纳米级区域和均匀分布对于提高协同效应至关重要。最近,作者提出,通过液态金属脱合金(LMD)合成的3D互连HS材料在克服强度-延展性权衡方面具有巨大潜力[27]。从(FeCr)50Ni50前驱体中,可混溶的Ni选择性地溶解在Mg熔体中。
b“摘要。在本文中,我们开发了一些新技术来以\ xe2 \ x88 \ x92 div a \ xb5 \ xb5 \ x88 \ x88 \ x87 \ x87 u \ xce \ xb5 = 0的形式研究多尺度椭圆方程\ xc2 \ xb7 \ xc2 \ xb7 \ xc2 \ xb7,x/\ xce \ xb5 n)是N-尺度振荡的周期性coe \ xef \ xac \ xac \ x83cient matrix和( \ xe2 \ x89 \ xa4 n是比例参数。We show that the C \xce\xb1 -H\xc2\xa8older continuity with any \xce\xb1 \xe2\x88\x88 (0 , 1) for the weak solutions is stable, namely, the constant in the estimate is uniform for arbitrary ( \xce\xb5 1 , \xce\xb5 2 , \ xc2 \ xb7 \ xc2 \ xb7 \ xc2 \ xb7,\ xce \ xb5 n)\ xe2 \ x88 \ x88 \ x88 \ x88(0,1] n,尤其与\ xce \ xb5i's。s。证明使用了升级的合并方法,涉及h-Convergence的比例还原定理。lipschitz估计任意(\ xce \ xb5 i)1 \ xe2 \ x89 \ xa4 i \ xe2 \ x89 \ xa4 n仍然保持开放。但是,对于特殊的层压结构,即A \ XCE \ XB5(x)= a(x,x,x,x 1 /\ xce \ xb5 1,\ xc2 \ xb7 \ xc2 \ xc2 \ xc2 \ xb7 \ xc2 \ xc2 \ xc2 \ xc2 \ xb7 \ xce \ xb5 1,\ xce \ xb5 2,\ xc2 \ xb7 \ xc2 \ xb7 \ xc2 \ xc2 \ xb7,\ xce \ xb5 n)\ xe2 \ xe2 \ x88 \ x88 \ x88 \ x88(0,1]这是通过一种重复化技术证明的。”
简介:氮化硅(SIN X)具有高折射率和光学透明度,从大约250 nm到7 µm,可以实现跨越紫外线的低损失平面综合设备,直到中型中型。作为一个平台,SIN X受益于晶圆尺度制造,免费的金属氧化物 - 氧化物 - 副导体(CMOS)兼容过程,并且可以针对不同的应用(包括非线性光学功能)定制[1]。但是,与许多集成的光子平台一样,可以在无法使用光栅耦合器时进行处理方面以进行最终耦合。传统的抛光可能会证明是耗时的,尤其是当从晶圆上处理数十个光子设备时,还证明了精确放置的刻面部的挑战。涉及多个薄层不同材料的层压结构,在抛光过程中的波导层的碎屑和分层也导致产量差。近年来,钻石加工通常使用DICING锯,开辟了通往各种脆性材料的光学质量表面的路线[2,3]。在延性状态下的加工可以拆除塑料样的材料,从而导致碎屑下的碎屑低和低表面粗糙度。我们以前已经证明了诸如二氧化硅和硅等散装材料的光学质量加工,以及尼贝特锂中的山脊波导和面的划分[4-7]。在这项工作中,我们将这些技术重新列为二合一质量质量的片段,该平台由多个层(底物 - 氧化物sin x-封顶层)组成,不需要抛光。我们将此技术扩展到了侧向定义的波导,这些波导证明了层压层的精确度,保存和凹入锯技术的低表面碎屑。我们的DICING例程还提供了一个过程来验证延性加工的参数。