最近,在量子科学和技术领域取得了巨大进展:量子模拟的不同平台以及量子计算的平台,从超导量子量到中性原子,始于开始,以达到前所未有的大型系统。为了基准这些系统并获得物理见解,需要有效的工具来表征量子状态。系统尺寸的希尔伯特空间的指数增长构成了对量子状态的全面重建,这是根据必要测量的数量而过于要求的。在这里,我们提出并实施了使用主动学习的量子状态效率的效率方案。基于一些初始测量,主动学习协议提出了下一个衡量基础,旨在产生最大信息。我们将主动学习量子状态态度方案应用于具有不同程度的范围的不同多数状态,以及1D中XXZ模型的基态和动力学结合的旋转链的基态。在所有情况下,与基于完全相同数量的测量和测量配置的重建相比,我们都会获得明显改进的重建,但具有最多选择的基础配置。我们的方案与获得量子多体系统以及基准测试和特征量子设备的物理见解高度相关,例如用于量子模拟,并为可伸缩的道路铺平了道路
运行标题:塞内克斯抑制CDK8/19鲁棒性强制执行病毒潜伏期,这是HIV-1治疗关键词的“阻止和锁定”策略:CDK7; CDK8; CDK9; CDK19; YKL-5-124; LDC000067;塞内克斯蛋白A; HIV-1;潜伏期;转录; tfiih;介体激酶; p-tefb;块和锁 *通信:I。Sadowski,Dept.生物化学和分子生物学,UBC,2350 Health Sciences Mall,Vancouver,B.C.,V6T 1Z3,加拿大;电子邮件:ijs.ubc@gmail.com;电话:(604)822-4524;传真:(604)822-5227。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
摘要 — 由于量子信息对噪声非常敏感,因此量子信息系统的实验实现将非常困难。克服这种敏感性对于设计能够可靠地在远距离传输量子信息的量子网络至关重要。此外,表征量子网络中通信噪声的能力对于开发能够克服量子网络噪声影响的网络协议至关重要。在这种情况下,量子网络断层扫描是指通过端到端测量来表征量子网络中的信道噪声。在这项工作中,我们提出了由单个非平凡泡利算子表征的量子信道形成的量子星型网络的网络断层扫描协议。我们的结果通过引入状态分布和测量分别设计的断层扫描协议,进一步提高了量子位翻转星型网络的端到端表征。我们以先前提出的量子网络断层扫描协议为基础,并提供了用于独特表征星型中位翻转概率的新方法。我们引入了一个基于量子费舍尔信息矩阵的理论基准来比较量子网络协议的效率。我们将我们的技术应用于所提出的协议,并对纠缠对量子网络断层扫描的潜在好处进行了初步分析。此外,我们使用 NetSquid 模拟所提出的协议,以评估针对特定参数范围获得的估计器的收敛特性。我们的研究结果表明,协议的效率取决于参数值,并激发了对自适应量子网络断层扫描协议的搜索。
手稿于2023年6月19日收到;修订于2023年6月26日; 2023年6月27日接受。出版日期; 2023年6月28日;当前版本的日期2023年7月18日。这项工作得到了美国能源部(Los Alamos报告编号LA-ur-22-32994)的部分支持,合同89233218CNA000001。根据20190043dr奖,洛斯阿拉莫斯国家实验室的实验室指导研究与开发计划(LDRD)计划的支持。Reeju Pokharel的工作得到了Grant Doe-NNSA的能源部国家核安全部门的动态材料物业运动的支持。Daniel J. Rutstrom的工作得到了DOE-NNSA的部分支持,该公司通过核科学和安全联盟颁发的DE-NA-0003 180奖和DE-NA-0003996奖和核能办公室,核能办公室,综合大学计划研究生奖学金。C. L. Morris和Mariya Zhuravleva的工作得到了田纳西大学的核科学和安全财团的支持,该联盟颁发了DE-NA-0003 180奖和DE-NA-0003996奖。Anton S. tremsin的工作得到了美国能源/NNSA/DNN研发部的部分支持,部分以及劳伦斯·伯克利国家实验室的一部分是根据合同AC02-05CH11231所支持的。本文的较早版本是在第16届闪烁材料及其应用国际会议的特刊(SCINT22),9月19日至23日,2022年,美国新墨西哥州圣达菲[doi:10.48550/arxiv.2212.10322]。(通讯作者:Zhehui Wang。)数字对象标识符10.1109/tns.2023.3290826Christotoge Dujardin与LumièreMatièreInstitut,UMR5306,CNRS,CNRS,UniverséClaudeBernard Lyon1,69622法国Villebanne,法国(电子邮件:christophhe.dujardin@.fr)。 Paul Lecoq是瑞士CH-1211 Geneva的欧洲核研究组织(电子邮件:Paul.lecoq@cern.ch)。 Wei Liu和Daniel G. Robertson在AZ 85054的May Clinic(电子邮件:liu.wei@mayoyo.edu; robertson.daniel@mayo.edu)。 Charles L. Melcher,Daniel J. Rutstrom和Mariya Zhuravleva与材料科学与工程系一起,田纳西州诺克斯维尔,田纳西州诺克斯维尔大学,美国田纳西州37996(电子邮件:cmelcher@cmelcher@utk.edu; drk.edu; drk.edu; drk.edu; > > > >Christotoge Dujardin与LumièreMatièreInstitut,UMR5306,CNRS,CNRS,UniverséClaudeBernard Lyon1,69622法国Villebanne,法国(电子邮件:christophhe.dujardin@.fr)。Paul Lecoq是瑞士CH-1211 Geneva的欧洲核研究组织(电子邮件:Paul.lecoq@cern.ch)。 Wei Liu和Daniel G. Robertson在AZ 85054的May Clinic(电子邮件:liu.wei@mayoyo.edu; robertson.daniel@mayo.edu)。 Charles L. Melcher,Daniel J. Rutstrom和Mariya Zhuravleva与材料科学与工程系一起,田纳西州诺克斯维尔,田纳西州诺克斯维尔大学,美国田纳西州37996(电子邮件:cmelcher@cmelcher@utk.edu; drk.edu; drk.edu; drk.edu; > > >Paul Lecoq是瑞士CH-1211 Geneva的欧洲核研究组织(电子邮件:Paul.lecoq@cern.ch)。Wei Liu和Daniel G. Robertson在AZ 85054的May Clinic(电子邮件:liu.wei@mayoyo.edu; robertson.daniel@mayo.edu)。 Charles L. Melcher,Daniel J. Rutstrom和Mariya Zhuravleva与材料科学与工程系一起,田纳西州诺克斯维尔,田纳西州诺克斯维尔大学,美国田纳西州37996(电子邮件:cmelcher@cmelcher@utk.edu; drk.edu; drk.edu; drk.edu; > >Wei Liu和Daniel G. Robertson在AZ 85054的May Clinic(电子邮件:liu.wei@mayoyo.edu; robertson.daniel@mayo.edu)。Charles L. Melcher,Daniel J. Rutstrom和Mariya Zhuravleva与材料科学与工程系一起,田纳西州诺克斯维尔,田纳西州诺克斯维尔大学,美国田纳西州37996(电子邮件:cmelcher@cmelcher@utk.edu; drk.edu; drk.edu; drk.edu; >Charles L. Melcher,Daniel J. Rutstrom和Mariya Zhuravleva与材料科学与工程系一起,田纳西州诺克斯维尔,田纳西州诺克斯维尔大学,美国田纳西州37996(电子邮件:cmelcher@cmelcher@utk.edu; drk.edu; drk.edu; drk.edu;Mar Nikl曾在捷克科学学院的物理研究所,捷克共和国普拉格16200号(电子邮件:nikl@fzu.cz)。Anton S. Tremsin与加利福尼亚州伯克利分校的太空科学实验室一起,美国加利福尼亚州94720美国(电子邮件:astr@berkeley.edu)。本文中一个或多个数字的颜色版本可从https://doi.org/10.1109/tns.2023.3
这项横断面研究比较了具有全身性合并症的老年人和白人成年人之间的光学相干断层造影术(八八)参数,以进一步了解视网膜微血管造成的种族差异。我们分析了浅表(SCP),中间(ICP)和深毛细血管(DCP),卵泡血管区(FAZ)参数和血流(BFA)的血管密度。我们使用了混合效应的线性回归模型,控制着高血压和来自同一受试者的两只眼睛,以比较八颗参数。黑色受试者在SCP和ICP处的中央凹ves ves-sel密度较低,而在任何毛细血管层的Parafovea或3x3 mm黄斑区域都没有观察到差异。黑色受试者具有更大的FAZ区域,周长和FD-300,这是FAZ周围300μm宽环的血管密度的测量。黑色受试者在脉络膜毛细血管处也具有较低的BFA。在没有高血压的受试者队列中,这些差异仍然具有统计学意义,除了脉络膜毛细血管的SCP和Foveal BFA外凹容器密度外。这些发现表明,八章参数的规范数据库必须在本质上努力多种多样,以充分捕捉患者人群之间的差异。需要进一步的研究以了解八八参数的基线差异是否导致眼部疾病中的流行病学疏散。
与荧光素血管造影(FA)相比,DR的黄金标准诊断标准,八颗八颗有助于评估视网膜微瘤状况。作为需要静脉穿刺和染料输注的方法,FA是侵入性且耗时的。此外,FA仅提供二维图像[3,4]。加上,深毛细血管(DCP)的八八图比其FA图像清晰。此外,在测量中央凹性血管区(FAZ)[5]时,八八颗粒的观察者间变异性比FA较小。八八人在诊断DR方面具有几个独特的优势。它具有在微血管异常(MAS)(MAS)之前检测到的早期迹象的能力,这些迹象包括毛细血管辍学,扩张的毛细血管环和毛细管分支[6]。此外,它可以检测一些未被FA捕获的MAS [7,8]并识别MAS和受影响的毛细血管丛的位置[9]。考虑到其清楚地识别增殖膜和后透明膜之间的结构关系[10-12],八
1 Fraunhofer Cluster of Excellence Programmable Materials, 79108 Freiburg im Breisgau, Germany 2 Fraunhofer Institute for Mechanics of Materials IWM, 79108 Freiburg im Breisgau, Germany 3 Lightweight Systems, Saarland University, 66123 Saarbrucken, Germany 4 Fraunhofer Institute for Integrated Circuits IIS, 91058德国Erlangen 5 Fraunhofer机床和成立技术IWU研究所,德累斯顿,德累斯顿,6弗劳恩霍夫非造成的测试研究所IZFP IZFP,66123,德国萨尔布鲁肯,德国 *通信 *通信:); sarah。fincher@izfp.fraunhofer.de(s.c.l.f.)†当前地址:Deggendorf理工学院应用计算机科学学院,德国Deggendorf 94469。‡当前地址:复杂材料研究所,莱布尼兹·伊夫·德累斯顿(Leibniz ifw Dresden),德国德累斯顿(Dresden),德国。
然而,在任意低温下制备给定哈密顿量的吉布斯态并非易事 39,人们提出了各种方法,包括经典方法和量子方法 40–43,以在某些特定条件下制备吉布斯态。其中一些技术包括基于量子拒绝采样 44 、动力学模拟 45,46 和降维 47 的算法,但实现这些方法的量子资源开销成本非常高,因此不适合在近期的量子设备上执行。为了在 NISQ 设备中找到量子算法的应用,底层量子电路应该是浅的,具有较低的电路深度和较少的量子比特数。变分量子算法 (VQA) 48 就是这样一类遵循基于变分原理的启发式方法的混合量子经典算法,由于它们在具有浅量子电路的 NISQ 设备上实现,近年来 49–54 非常流行。为了使用 VQA 在 NISQ 设备上准备量子吉布斯态,已经提出了几种方法。55–60 在这项工作中,我们采用了 Wang 等人的方法。39 其中,在量子电路上准备吉布斯态的损失函数涉及熵的泰勒级数截断,并且已被证明可以为给定的汉密尔顿量准备保真度超过 99% 的吉布斯态。系统的物理汉密尔顿量是未知的,实际上在此协议中是不必要的。人们只能访问任意一组厄米算子的期望值。原则上,使用形式主义可以生成与这种任意甚至不完整的平均测量集一致的最小偏差量子态,但在本报告中,我们使用 IC 集进行测试和验证,希望能够提供用于采样的未知纯量子态的近乎精确的重建。这是通过构建一个厄米矩阵 H 来实现的,该矩阵由拉格朗日乘数参数化。后者充当吉布斯态的代理汉密尔顿量,吉布斯态代表量子系统状态的断层扫描重建。本文提出的混合量子-经典断层扫描协议涉及浅参数化量子电路的应用,可在当前到近期的量子硬件上进行实验实现。这本身就比某些其他断层扫描协议 11-14 更有优势,因为经过优化,状态可以直接在量子
图 3:对于范围从 2 到 6 的量子比特,该图显示了在每一步优化中使用重建的量子态获得的 Hermitian 算子的 IC 集的真实期望值和生成的期望值之间的时期数的函数即均方误差 (MSE) 损失。