Loading...
机构名称:
¥ 1.0

然而,在任意低温下制备给定哈密顿量的吉布斯态并非易事 39,人们提出了各种方法,包括经典方法和量子方法 40–43,以在某些特定条件下制备吉布斯态。其中一些技术包括基于量子拒绝采样 44 、动力学模拟 45,46 和降维 47 的算法,但实现这些方法的量子资源开销成本非常高,因此不适合在近期的量子设备上执行。为了在 NISQ 设备中找到量子算法的应用,底层量子电路应该是浅的,具有较低的电路深度和较少的量子比特数。变分量子算法 (VQA) 48 就是这样一类遵循基于变分原理的启发式方法的混合量子经典算法,由于它们在具有浅量子电路的 NISQ 设备上实现,近年来 49–54 非常流行。为了使用 VQA 在 NISQ 设备上准备量子吉布斯态,已经提出了几种方法。55–60 在这项工作中,我们采用了 Wang 等人的方法。39 其中,在量子电路上准备吉布斯态的损失函数涉及熵的泰勒级数截断,并且已被证明可以为给定的汉密尔顿量准备保真度超过 99% 的吉布斯态。系统的物理汉密尔顿量是未知的,实际上在此协议中是不必要的。人们只能访问任意一组厄米算子的期望值。原则上,使用形式主义可以生成与这种任意甚至不完整的平均测量集一致的最小偏差量子态,但在本报告中,我们使用 IC 集进行测试和验证,希望能够提供用于采样的未知纯量子态的近乎精确的重建。这是通过构建一个厄米矩阵 H 来实现的,该矩阵由拉格朗日乘数参数化。后者充当吉布斯态的代理汉密尔顿量,吉布斯态代表量子系统状态的断层扫描重建。本文提出的混合量子-经典断层扫描协议涉及浅参数化量子电路的应用,可在当前到近期的量子硬件上进行实验实现。这本身就比某些其他断层扫描协议 11-14 更有优势,因为经过优化,状态可以直接在量子

基于最大熵形式的量子态层析成像变分方法

基于最大熵形式的量子态层析成像变分方法PDF文件第1页

基于最大熵形式的量子态层析成像变分方法PDF文件第2页

基于最大熵形式的量子态层析成像变分方法PDF文件第3页

基于最大熵形式的量子态层析成像变分方法PDF文件第4页

基于最大熵形式的量子态层析成像变分方法PDF文件第5页

相关文件推荐

2022 年
¥1.0
2024 年
¥4.0