深色发酵(DF)是一种生物学过程,能够从有机废物中产生氢气,这可以作为生物精炼厂中的基础发挥关键作用。,但仍需要优化DF的流体动力条件以增强气体液传质,从而减少了可溶性氢的自抑制作用。质量转移增强受到限制,因为对微生物的液压应力必须受到限制,并且该过程的经济可持续性必须保持。最近的结果表明,在层流和湍流方案之间的过渡区域中,DF增强了。为了更好地了解该制度中的3D流体动力特征,开发了一种改进的光学轨迹技术并将其应用于配备双型物件设备的2-L生物反应器。所提出的方法旨在同时使用三个摄像机来监测多达十个颗粒作为示踪剂的轨迹,但也能够在每个相机的2D图像中提供颗粒的实时位置,以最大程度地减少治疗后时间。应用了该方法,包括立体摄像机校准,实时和后处理以重建3D轨迹,并针对2D-PIV和CFD数据进行了验证。达成了良好的一致性,但是由于粒径,很难捕获附近壁和叶轮的区域。结果表明,与单个粒子作为示踪剂相比,使用五个颗粒的工作能够减少3-4的测量时间,而较高数量的示踪剂增加了伪像的镜头。
电动汽车在很大程度上依靠可充电电池单元进行储能。空气冷却具有简单的设计和高可靠性,仍然是控制电池温度的有效方法。但是,由于空气的热容量有限,其热性能很差。为了提高传热系数,同时还可以最大程度地减少成本,这项研究采用了21,700个缸形电池电池模块的各种细胞构型,包括带有纵向气流的冷却鳍。使用有限体积方法模拟质量连续性,动量和能量保护方程式,对各种雷诺数(1,679≤RE≤33,588)进行了三维数值模拟(1,679≤RE≤33,588)。结果表明,具有纵向空气冷却的层流循环系统可以在低排放电流(≤1.0c)的最佳操作条件下维持电池(≤1.0c),即使在周围30°C的周围温度下,螺旋长度通过螺旋长度降低了50%,并改变其位置并更改其位置(即,均位置的位置,均位置为0.95,in 0.95 c. coce in 0.95 c. coce in 0.95; 48.7°C.将螺旋鳍环路从1到五个将最大t的最大值降低了7.4%,最大δT最大降低了29.8%。超过五个螺旋回路,随着δT最大的增加,模型的温度一致性会恶化。多项式方程,以估计电池在各种排放电流下电池模块的某些热性能。
主要的临床服务和实验室服务位于阿伯丁皇家医务室。临床服务位于锚式单元(阿伯丁和北部血液,肿瘤学和放射疗法中心)内,并包括一个内置的住院和门诊设施。专用血液学住院单元位于2013年开放的紧急护理中心的7楼。该单元包括23张床,带有8个层流室,用于高剂量治疗和造血干细胞移植。门诊和日间单位设施在2010年移至目前的位置,每天进行治疗和调查。已开始在Foresterhill网站上建立新的癌症中心,该中心将于2024年开放。该中心将提供最先进的门诊和日间治疗设施。在整个地区提供一般血液学服务,其中涉及有关医疗,外科,妇产科和重症监护病房的管理建议。在部门内,除了同种异体干细胞移植外,还实践了血液学的所有方面,这在整个苏格兰在格拉斯哥进行。实验室服务为整个地区的所有医院住院测定法提供了来自该地区的所有通用实践样本。在普通和恶性血液学的各个方面以及止血和血栓形成方面都进行了完整的测定补体。实验室服务获得了UKAS的认可,并参加了所有适当的外部质量保证练习。细胞遗传学,分子血液学和免疫表型服务的开发为高标准,并与免疫学和遗传学的同事有关。
第一学期 AS 1010 航空航天工程概论 2 0 0 2 航空航天和航天飞行的历史;飞机和航天器的分类;飞机和航天器主要部件的功能;航空航天工程的细分;空气动力学、推进、结构、系统、飞行力学和控制要素。印度航空航天活动。 第三学期 AS 1020 流体力学 3 1 0 4 流体力学简史,流体及其性质,粘度、热导率、质量扩散率、压缩性和表面张力的概念,其分子考虑。流体静力学 - 压力中心、浮力中心和元中心,ISA。张量微积分(笛卡尔张量)。描述流体运动的欧拉和拉格朗日方法、流线、条纹线和路径线。流体运动学 - 平移、旋转和变形、循环、格林斯托克斯定理。推导微分和积分形式的质量、动量和能量控制方程及其对无粘性和势流的特殊化。非惯性系中的方程。伯努利方程。一维流动。各种情况下的说明性示例。层流,例如库埃特流和哈根-泊肃叶流,轴承和边界层中的流动。量纲分析平板和管道中的粘性流 - 过渡、湍流、管道中的表面摩擦和损耗 AS 2010 材料基础强度 3 1 0 4 应力和应变简介 - 胡克定律、应力和应变变换、主应力和应变 - 圆形截面的扭转 - 薄壁压力容器 - 对称截面梁的弯曲和剪切应力 - 用各种方法计算静定梁的挠度 - 组合载荷引起的应力、失效理论。弹性理论简介、场方程、艾里应力函数、笛卡尔坐标中的二维问题、厚圆柱体的拉梅解。
通过增强学习(RL)进行拖曳减少的主动流控制(RL)是在带有涡旋脱落的层流方向的二维方形悬崖体后进行的。由神经网络参数参数的控制器经过训练,以驱动操纵不稳定流量的两次吹和吸气喷气机。具有完全可观察性的RL(传感器在尾流中)成功地发现了一种控制策略,该策略通过抑制涡流脱落而降低阻力。但是,当控制器接受部分测量(体内传感器)训练时,观察到不可忽略的性能降解(减少50%)。为了减轻这种效果,我们提出了一种能量,动态的,最大的熵RL控制方案。首先,提出了基于能量的奖励功能,以优化控制器的能量消耗,同时最大程度地减少阻力。第二,控制器的培训是通过由当前和过去的测量和动作组成的增强状态训练的,可以将其作为非线性自回归外源模型进行配制,以减轻部分可观察性问题。使用第三,最大熵RL算法(软演员评论家和截短的分位数评论家),以样本效果的方式促进探索和剥削,并在挑战性的部分测量案例中发现近乎最佳的策略。稳定涡流脱落是在人体后部仅使用表面压力测量的近唤醒中实现的,从而导致与唤醒传感器相似的阻力减小。提出的方法使用部分测量对现实配置开辟了新的动态流量控制途径。
本文提出了一套新的缩放定律,用于研究轻质钢筋混凝土隧道衬砌在 1g 振动台试验中的开裂后行为。开裂后行为缩放定律使用两个无量纲参数制定:脆性数 s ,它控制非钢筋混凝土构件的断裂现象;NP ,它对钢筋混凝土构件中混凝土断裂过程和钢塑性流动的稳定性起主要作用。提出的定律允许开发“充分”的实验模型,并使用原型和 1:30 模型比例的岩石钢筋隧道的数值分析进行验证。采用的实验装置的灵感来自现有的 1g 物理测试活动,该测试活动针对岩石混凝土隧道的地震响应,并且假设的定律表明在两个检查的地震记录下,模型和原型隧道的开裂行为具有令人满意的相似性。强调了在 1g 测试中使用提出的定律对钢筋混凝土隧道中不断发展的裂缝模式进行 A 级预测的潜力。在三种可能的边界条件下对所提出的定律进行了检验,结果表明,与设想的自由场边界模型相比,刚性箱和层流箱仍然可以显著改变行为。但分析表明,对于较大的土壤与衬砌刚度比,边界伪影可以大大减少。本研究为迄今为止尚不存在的未来 1g 测试提供了有用的建议,而所提出的缩放定律允许在设计新型隧道衬砌模型测试材料时具有多功能性。
尽管有几项全基因组关联研究,这些研究强调了与阿尔茨海默氏病(AD)相关的遗传变异,但通常将X染色体排除在分析之外。我们在三项具有病理确定表型的独立研究中进行了全面的X染色体结合研究(XWAS)(总计1970年和1113例对照)。XWA分别在男性和女性中进行,然后对这些结果进行荟萃分析。Four suggestively associated genes were identi fi ed which may be of potential interest for further study in AD, these are DDX53 (rs12006935, OR = 0.52, p = 6.9e-05), IL1RAPL1 (rs6628450, OR = 0.36, p = 4.2e-05; rs137983810, OR = 0.52, p = 0.0003), TBX22(RS5913102,OR = 0.74,p = 0.0003)和SH3BGRL(RS186553004,OR = 0.35,p = 0.0005; rs113157993; rs113157993,or = 0.52,p = 0.0003),至少在两项研究中复制了。TBX22中的SNP RS5913102在荟萃分析的数据中实现了全染色体的显着性。DDX53在星形胶质细胞中显示最高的表达,IL1RAPL1在少突胶质细胞和神经元中最高表达,而SH3BGRL在小胶质细胞中最高表达。我们还鉴定了女性染色体范围内的NXF5基因中的SNP(rs5944989 rs5944989,OR = 0.62,p = 1.1E-05),但在男性中没有(p = 0.83)。在X染色体上发现相关的AD相关基因可能会根据性别确定AD风险差异和相似性,并导致性层流疗法的发展。
摘要:本文报告了具有正方形和圆形冷却通道的微通道热交换器的三维数值优化的结果。优化的目的是最大化全局热电导或最大程度地减少全局热电阻。响应表面优化方法(RSM)用于数值优化。在单位细胞微通道的底部表面施加了高密度热通量(2.5×10 6𝑊/𝑚2),并使用ANSYS Fluent Commercial软件包进行了数值模拟。微通道的元素体积和轴向长度𝑁= 10 r均固定,而宽度则是免费的。冷却技术采用单相水,该水通过矩形块微通道散热器流动以在强制对流层流方向上去除微通道底部的热量。在微通道轴向长度上泵送的流体的速度为400≤𝑅𝑒≤500的范围。有限体积方法(FVM)用于描述用于求解一系列管理方程的计算域和计算流体动力学(CFD)代码。研究并报告了水流数量和雷诺数对峰值壁温度和最小温度的影响。数值结果表明,具有方形冷却通道的微通道比具有圆形构型的微量散热器具有最大最大的全局热电导率。数值研究的结果与开放文献中的内容一致。关键字:正方形配置,圆形配置,微散热器,数值优化,导热率[接收到2022年8月1日;修订于2022年10月8日;被接受的2022年11月6日]印刷ISSN:0189-9546 |在线ISSN:2437-2110
氨(NH 3)是向无碳能源系统转变的关键参与者。可靠的化学动力学模型对于基于NH 3的燃烧技术的进步至关重要。尽管存在相当多的单个模型,但它们的验证发生在不同的情况下,并且最常见于有限的条件集,主要基于与实验数据的图形比较。这项研究对纯NH 3和NH 3 /H 2混合物的广泛实验数据库进行了16个最新模型的全面定量评估。这种定量评估的基础是在平滑插值实验和相应的预测曲线之间计算出的相似性评分。评估利用了文献中可用的广泛实验数据集,并根据不同的目标数量进行分类,包括物种浓度,点火延迟时间和层流燃烧速度。根据热解,高温,中等和低温氧化以及热DENO X过程,将物种浓度评估进一步分类。全面的评估揭示了模型的性能之间的显着差异,有些模型比其他模型表现出更好的一致性。均未在所有条件下达成令人满意的一致性,强调了进一步改进的必要性。模型性能在不同的类别下进行了审查,以检查关键动力学参数,并提供了潜在改进的见解。在更广泛的背景下,整合全面的NH 3 /H 2模型需要从各种动力学建模,实验和理论计算研究中融合见解。这项工作是朝这个方向朝着这一方向发展的基础步骤,这有助于不断努力地完善对NH 3燃烧的理解。
凹坑表面技术旨在通过涡流强化通道中的传热,同时保持水力损失的适度增长,该技术在热能工程中有着广泛的应用[1,2]。微电子领域对此也产生了一定的兴趣[3-5],而关于普朗特数对层流传热强化影响的研究发表得就更少了。具体来说,在综述[2]中提到了[6,7]项研究,其中讨论了变压器油在加热壁面上具有单排球形和椭圆形凹坑的微通道中的流动。研究发现,在一个加热到 30 ◦ C 的九段微通道(宽度为 2,高度为 0.5,以通道高度为单位)的壁上,在低速(雷诺数 Re = 308)变压器油流动的情况下,定位具有中等深度(0.2)和螺距为 1.5 的球形凹坑,可以促进涡流强化传热,并且与光滑通道的情况相比,该壁面的传热增加了约 2.5 倍,水力损失减少了 7%。与光滑通道的情况相比,具有相同斑点面积(宽度为 0.55,长度为 1.5,以底部凹坑斑点直径为单位)和相同深度的椭圆形凹坑可以使传热进一步增强 3.4 倍(即,总共增强了 8.5 倍),水力损失减少 2.1%。 [8] 中发现了具有稀疏单排倾斜槽的通道稳定段中层流气流的局部加速。形成剪切流中的最大纵向速度几乎是平面平行通道中最大流速的 1.5 倍。后来确定,热效率由冲洗通道上平均的相对总努塞尔特数指定