此预印本版的版权持有人于2024年3月20日发布。 https://doi.org/10.1101/2024.03.19.585540 doi:Biorxiv Preprint
摘要:乳腺癌脑转移(BCBM)是一种充满挑战的疾病,治疗方案有限,预后不良。了解肿瘤细胞与血脑屏障(BBB)之间的相互作用对于发展新型治疗策略至关重要。一个有希望的靶标是雌激素受体β(ERβ),它促进了钥匙紧密连接蛋白的表达,密封了BBB并降低了其渗透性。在这项研究中,我们研究了17β-雌二醇(E2)和选择性ERβ激动剂二脂二替依替依lim(DPN)对内皮细胞和癌细胞的影响。Western印迹分析揭示了这些细胞系中ER的表达模式,雌激素治疗上调了脑内皮细胞中Claudin-5的表达。使用BBB的体外模型,我们发现DPN治疗显着提高了BBB的紧密度,以抑制代表性HER2阳性(BT-474)和三个阴性(MDA-MB-231)抑制BBB迁移活性。然而,当癌细胞在E2存在下预分化时,DPN治疗的效率降低。我们的结果支持ERβ作为预防和治疗BCBM的潜在目标,并表明基于靶向向量的方法可能对未来的预防和治疗意义有效。
Bio/Ecoresbable Electronic Systems在可植入的医疗设备中创造了独特的机会,这些设备在有限的时间内满足需求,然后自然消失以消除对提取手术的需求。这类技术开发的一个关键挑战是,材料可以用作周围水或生物流体的薄壁垒,但最终完全溶于良性最终产品。本文描述了一类无机材料(硅硝酸盐,sion),可以通过血浆增强化学蒸气沉积在薄膜中形成。体外研究表明,sion及其溶解产物具有生物相容性,表明其在植入式设备中的使用潜力。一个简便的过程,用于制造薄弱的多层薄膜,绕过与无机薄膜的机械脆性相关的限制。系统的计算,分析和实验研究突出了基本材料方面。在体外和体内发出无线发光二极管中的演示说明了这些材料策略的实际使用。通过对化学成分和厚度的精细调整,可以选择降解速率和水渗透性的能力为获得一系列功能寿命以满足不同的应用程序要求。
血液脑屏障(BBB)通过有选择地防止物质从外周血进入中枢神经系统(CNS)来维持大脑体内平衡中起着至关重要的作用。由内皮细胞,周细胞和星形胶质细胞组成,这种高度调节的障碍包括大脑的大部分脉管系统。除了其保护功能外,BBB还与血管周围巨噬细胞(Mφ)和小胶质细胞(大脑的常驻Mφ)一起进行了重要的串扰。这些相互作用在调节包含BBB的细胞的激活状态以及MφS和小胶质细胞中起着关键作用。全身代谢和炎症状态的改变可以促进内皮细胞功能障碍,降低BBB的完整性,并可能允许外周血因子渗入中枢神经系统室。这可能介导血管周围MφS,小胶质细胞和星形胶质细胞的激活,并在脑实质内启动进一步的免疫反应,这表明可以通过来自周围的信号传导触发神经炎症,而无需源于CNS内的原发性损伤或疾病。通过BBB通过BBB之间的外围与中枢神经系统之间的复杂相互作用突出了了解小胶质细胞在介导对系统挑战的反应中的作用的重要性。尽管最近进步,但我们对小胶质细胞与BBB之间相互作用的理解仍处于早期阶段,留下了很大的知识差距。然而,新兴的研究正在阐明在各种疾病中,包括全身感染,糖尿病和缺血性中风的小胶质细胞的参与。本综述旨在对当前研究的研究进行全面概述,该研究调查了小胶质细胞与健康和疾病中BBB之间的复杂关系。通过探索这些联系,我们希望能够提高我们对脑免疫反应对系统性挑战的作用及其对CNS健康和病理的影响的理解。发现这些相互作用可能对涉及免疫和血管机制的神经系统疾病的新型治疗策略有希望。
1 Amnah Mahroo,2 Merquiant Tee,3 Markus H Sneve,Moyaert的Paul 4,Julia Wiersinga,10 Roos Rikken,11 Diesterrick,Leeuw的Diederrick,11HåkonGrydeland,Jennifer,Jennifer,Jennifer,Jennifer,Jennifer,15,16 Morilitz Brandt,Hen hen selnes,Selnes,Selnes,19 Patricia Clement,6 Eric clement,6 Eric clemen,G。 1
1 Amnah Mahroo,2 Merquiant Tee,3 Markus H Sneve,Moyaert的Paul 4,朱莉娅·威尔辛加(Julia Wiersinga詹妮弗(Jennifer),15,16 Morilitz Brandt,塞尔恩斯(Selnes),19帕特里夏·克莱门特(Patricia Clement),埃里克·阿切滕(Eric Achten)6 Günther,Henk J M M Mutsaerts 1
。CC-BY 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2024 年 2 月 19 日发布了此版本。;https://doi.org/10.1101/2024.02.19.580932 doi:bioRxiv 预印本
摘要 - 许多研究表明,在大气压力(也称为“冷大气等离子体”(CAP))处的非平衡放电有效地去除各种材料表面的生物污染物。最近,由于其产生的化学和生物活性自由基,CAP已迅速作为微生物清洁,伤口愈合和癌症治疗的技术,统称为活性氧和氮种(RONS)。本文回顾了与称为介电屏障排放(DBD)的一种有关的研究,该研究已广泛用于用微生物处理材料,以进行静脉化,消毒和去污染。为了推动在冷大气血浆应用中的研究,本综述讨论了屏障排放的各种类型和配置,反应性物种和其他DBD-CAP剂的作用以及其他导致其抗菌功效的DBD-CAP剂,其中一些DBD-CAP过去的过去研究专门在表面上以及DBD-CAP Tech-Tech-Tech-nology的出现应用。我们的审查表明,由DBD产生的非热/平衡等离子体可以对材料进行灭菌或消毒,而不会造成任何热损害或环境污染。
摘要:缺血性中风是全球主要的健康问题,死亡率和致残率很高。不幸的是,目前缺乏有效的临床干预措施来管理中风后的神经炎症和血脑屏障 (BBB) 破坏,而这些对于脑损伤的发展和神经功能缺损至关重要。通过利用缺血性中风的病理进展,我们开发了一种靶向 M2 小胶质细胞的脂质纳米颗粒 (称为 MLNP) 方法,可以选择性地将编码表型转换白细胞介素 10 (m IL-10 ) 的 mRNA 递送到缺血脑,形成一个有益的反馈回路,驱动小胶质细胞极化向保护性 M2 表型发展,并增强 m IL-10 负载的 MLNP (m IL-10 @MLNPs) 向缺血区域的归巢。在缺血性中风的短暂性中脑动脉闭塞 (MCAO) 小鼠模型中,我们的研究结果表明静脉注射 m IL-10 @MLNPs 可诱导 IL-10 的产生并增强小胶质细胞的 M2 极化。由此产生的正环路增强了神经炎症的消退,恢复了受损的 BBB,并防止了中风后的神经元凋亡。使用缺血性中风的永久性远端 MCAO 小鼠模型,m IL-10 @MLNPs 的神经保护作用已通过减轻感觉运动和认知神经功能障碍得到进一步验证。此外,开发的基于 mRNA 的靶向疗法具有将治疗时间窗延长至中风后至少 72 小时的巨大潜力。这项研究描述了一个简单而多功能的 LNP 平台,用于将 mRNA 疗法选择性地递送到脑病变,展示了一种治疗缺血性中风和相关脑部疾病的有前途的方法。关键词:缺血性中风、脂质纳米颗粒、靶向递送、mRNA、表型转换