通过铣削,打磨,运输(Sobueclay)通过散射地面岩石(与发电的相关背景数据,设备生产等的相关背景数据)在ERW Energy使用eRW Energa的操作数据中,通过GAS-SOLID COSILID与House House Operation,Pasterpessing等通过ERW Energy使用下的操作数据(MHI,MHI,JCE,JCE)通过铣削,打磨,运输(Sobueclay)通过散射地面岩石(与发电的相关背景数据,设备生产等的相关背景数据)在ERW Energy使用eRW Energa的操作数据中,通过GAS-SOLID COSILID与House House Operation,Pasterpessing等通过ERW Energy使用下的操作数据(MHI,MHI,JCE,JCE)
Newco的核心资产将包括Guben,德国的Rock Tech的完全允许的锂转换器以及Arcore在波斯尼亚 - 黑塞哥维那的Lopare的Arcore锂 - 波里隆 - 墨西哥矿业项目。可以预见,Lopare项目将从2030年开始向Guben转换器提供硫酸锂(现场生产);除了从合同的合作伙伴那里获得的Spodumene供应。利用硫酸锂作为未来的原料是建立圆周锂经济并大大降低生产成本的关键步骤。这种方法与Rock Tech的回收流程表保持一致,该流程图使用了黑色质量回收的硫酸锂,随后将其精制成Rock Tech的转换器的电池级氢氧化锂。通过将锂原料加工到硫酸锂在洛帕雷的位置,重要的增值步骤将保留在国内。
声纳岩与矿山预测是一个机器学习问题,它使用声纳数据来区分岩石和矿山。目标是开发一个模型,该模型可以根据声纳返回数据准确对对象进行分类。一些可用于声纳岩石与地雷预测的机器学习算法包括:逻辑回归,随机森林,K-Neart邻居,支持向量机和深层神经网络。在海洋操作中,声纳设备是必不可少的,尤其是对于寻找岩石和矿山等淹没的物体。确保海上安全和保障需要准确地区分这些事情的能力。我们在这项研究研究中对机器学习算法进行了详尽的比较,以帮助确定声纳回报是否指示岩石或矿山。使用声纳声音特征的数据集,我们评估了几种监督的学习算法:随机森林,K-最近的邻居,支持向量机和深神经网络。我们根据F1得分,召回,准确性和分类中的精度来研究模型的性能。我们还研究了特征选择策略和超参数调整如何影响模型的性能。通过全面的测试和分析,我们提供了有关基于声纳的对象的不同机器学习方法
瑞士联邦材料科学技术实验室(EMPA)的科学家的这份新报告强调,与(1)和(2)相关的容量损失可以通过创建人工阴极电解质相(CEI)层来减轻。他们使用分子层沉积(MLD)将岩石酮层直接生长到多孔的NMC811粒子电极上。在这项工作中,将岩石酮层与锂丁氧化锂(Liotbu)和乙二醇作为前体沉积,在Arradiance Gemstar TM TM XTM XT-P反应器中,偶联,与Argon-Flove Box偶联,在低反应器温度下,以避免了电极温的热降解。在基于Si晶片的高射线比结构上的膜厚度覆盖率从210nm线性下降到20:1纵横比的30-40Nm,这是尝试对该技术进行商业化的重要工程变量。尝试在实际电极上,碳颗粒的聚集(以NMC811颗粒之间提供电子接触)阻碍了MLD均匀的生长,从而导致岩石酮覆盖率较小。
摘要 原子层沉积(ALD)已成为当代微电子工业中不可或缺的薄膜技术。ALD 独特的自限制逐层生长特性使该技术能够沉积高度均匀、共形、无针孔的薄膜,并且厚度可控制在埃级,尤其是在 3D 拓扑结构上。多年来,ALD 技术不仅使微电子器件的成功缩小,而且还使许多新颖的 3D 器件结构成为可能。由于 ALD 本质上是化学气相沉积的一种变体,因此全面了解所涉及的化学过程对于进一步开发和利用该技术至关重要。为此,我们在本综述中重点研究 ALD 的表面化学和前体化学方面。我们首先回顾了气固 ALD 反应的表面化学,并详细讨论了与薄膜生长相关的机制;然后,我们通过比较讨论 ALD 工艺中常用的前体来回顾 ALD 前体化学;最后,我们有选择地介绍了 ALD 在微电子领域的一些新兴应用,并对 ALD 技术的未来进行了展望。
- 奥地利航天局(ASA)/奥地利。- 比利时科学政策办公室(BELSPO)/比利时。- 机器建筑中央研究所(TSNIIMASH)/俄罗斯联合会。- 北京跟踪与电信技术研究所(CLTC/BITTT)/中国/中国卫星卫星发射和跟踪控制将军/中国。- 中国科学院(CAS)/中国。- 中国太空技术学院(CAST)/中国。- 英联邦科学与工业研究组织(CSIRO)/澳大利亚。- 丹麦国家航天中心(DNSC)/丹麦。- deciênciae tecnologia Aerospacial(DCTA)/巴西。- 电子和电信研究所(ETRI)/韩国。- 欧洲剥削气象卫星(Eumetsat)/欧洲的组织。- 欧洲电信卫星组织(Eutelsat)/欧洲。- 地理信息和太空技术发展局(GISTDA)/泰国。- 希腊国家太空委员会(HNSC)/希腊。- 希腊航天局(HSA)/希腊。- 印度太空研究组织(ISRO)/印度。- 太空研究所(IKI)/俄罗斯联合会。- 韩国航空航天研究所(KARI)/韩国。- 通信部(MOC)/以色列。- 穆罕默德垃圾箱拉希德航天中心(MBRSC)/阿拉伯联合酋长国。- 国家信息与通信技术研究所(NICT)/日本。- 国家海洋与大气管理局(NOAA)/美国。- 哈萨克斯坦共和国国家航天局(NSARK)/哈萨克斯坦。- 国家太空组织(NSPO)/中国台北。- 海军太空技术中心(NCST)/美国。- 荷兰太空办公室(NSO)/荷兰。- 粒子与核物理研究所(KFKI)/匈牙利。- 土耳其科学技术研究委员会(Tubitak)/土耳其。- 南非国家航天局(SANSA)/南非共和国。- 太空和高中气氛研究委员会(Suparco)/巴基斯坦。- 瑞典太空公司(SSC)/瑞典。- 瑞士太空办公室(SSO)/瑞士。- 美国地质调查局(USGS)/美国。
关于 Ribbon Ribbon Communications (Nasdaq: RBBN) 为全球服务提供商、企业和关键基础设施部门提供通信软件、IP 和光纤网络解决方案。我们与客户密切合作,帮助他们实现网络现代化,以在当今智能、始终在线和数据饥渴的世界中提高竞争地位和业务成果。我们创新的端到端解决方案组合提供无与伦比的规模、性能和灵活性,包括从核心到边缘的以软件为中心的解决方案、云原生产品、领先的安全和分析工具,以及适用于 5G 的 IP 和光纤网络解决方案。我们始终密切关注对环境、社会和治理 (ESG) 事务的承诺,并向我们的利益相关者提供年度可持续发展报告。要了解有关 Ribbon 的更多信息,请访问 rbbn.com。