分子克隆目前正在进行中。克隆完整后,将开始将带有RNA的CRISPR/CAS9构建体转染为PGCS。修饰的PGC将被注入雄性鸡胚胎中,该鸡肉将产生能够传输AMH无效等位基因的生殖线嵌合体。白色leghorn种系嵌合体将与罗德岛红鸡交叉以产生杂合子后代。这些后代将彼此交叉以产生纯合AMH敲除突变体。该研究将阐明AMH信号在鸡肉性发育中的作用。在鸡中研究AMH信号有助于确定AMH信号是否是跨脊椎动物的保守进化机制。AMH基因敲除鸡模型的表型将与其他AMH敲除模型的表型进行比较。
摘要:自 18 世纪引入第一个种子概念以来,不同的学科根据双功能分子的应用赋予了不同的名称,包括生物共轭物、双功能化合物、多靶向分子、嵌合体、杂交体、工程化合物。但这些工程构建体具有共同的通用结构:第一个成分靶向特定细胞,第二个成分发挥药理活性。稳定或可裂解的连接体将嵌合体的两个模块连接起来。本文,我们讨论了利用化学生物学概念在迅速发展的嵌合分子领域的最新进展。本观点重点关注双功能化合物,其中一个成分是先导化合物或药物。我们将详细讨论嵌合分子的化学特征及其在靶向递送和靶向参与研究中的用途。
基因组编辑通过有针对性地引入天然序列变体,加速遗传增益,为改进当前的牛育种策略提供了机会。这可以通过在修复模板存在的情况下利用编辑器诱导的基因组切割后的同源性定向修复机制来实现。将基因组编辑器引入受精卵并在胚胎中进行编辑的优势在于,活体动物的发育不会受到影响,并且与当代基于胚胎的改良实践保持一致。在我们的研究中,我们调查了引入已知的前黑素体蛋白 17 ( PMEL ) 和催乳素受体 ( PRLR ) 基因的序列变体,并产生完全转化为精确基因型的非嵌合体编辑胚胎的潜力。将 gRNA/Cas9 编辑器注射到牛受精卵中以将 3 bp 缺失变体引入 PMEL 基因,可产生高达 11% 的完全转化胚胎。使用 TALEN 后,转化率提高到 48%,但前提是通过质粒递送。在几种已知 PRLR 序列变体、不同修复模板设计和 DNA、RNA 或核糖核蛋白传递的背景下测试三种 gRNA/Cas9 编辑器,实现了高达 8% 的完全转化率。此外,我们还开发了一种基于活检的非嵌合体胚胎筛选策略,该策略有可能专门生产具有预期精确编辑的非嵌合体动物。
“随着生物制剂在治疗领域的重要性日益凸显,现在是时候研究抗体配体作为离子通道调节剂的进展了,包括多克隆抗体和单克隆抗体、纳米抗体和抗体毒素嵌合体,以及它们在免疫学、心脏病学、神经科学和肿瘤学中的应用”
P4-12-03 Vepdegestrant,一种靶向蛋白水解的嵌合体 (PROTAC) 雌激素受体 (ER) 降解剂,加上 ER 阳性/人类表皮生长因子受体 2 (HER2) 阴性晚期或转移性乳腺癌中的 Abemaciclib:TACTIVE-U 初步 1b 期结果
流感病毒糖蛋白血凝素 (HA) 参与病毒颗粒附着到宿主细胞膜受体和膜融合的关键步骤。由于其在甲型流感感染的初期起着至关重要的作用,HA 成为寻找新型类药物候选物的有希望的靶标。鉴于其在甲型流感感染早期的关键作用,过去几十年来,人们一直在大力开展针对 HA 的药物研发工作。药物研发研究主要依赖于阻止球状头部 (GH) 结构域中的受体结合位点识别唾液酸单元,或阻止病毒和细胞膜融合所需的构象重排。本文旨在总结以 HA 为靶点的小分子融合抑制剂的开发进展。为此,我们将主要关注与融合抑制剂结合的 HA 的 X 射线晶体结构分析。此外,本研究还旨在强调利用结构信息与分子建模技术来辨别融合抑制剂的作用机制以及协助设计和解释新型先导化合物的构效关系的努力。最后一部分将致力于阐明从已知小分子抗病毒药物转化为基于蛋白水解靶向嵌合体 (PROTAC) 的靶向蛋白质降解开始的新型和有前景的抗病毒策略。这些知识将有助于开发经典和新型的基于结构的抗病毒策略,同时更深入地了解作用机制并尽量减少耐药性的影响。
基于核酸的TPD具有以下优势:首先,扩大了细胞内靶蛋白的范围。以核酸基序为弹头的PROTAC已成功用于降解缺乏活性配体结合位点的蛋白质,包括RNA结合蛋白(RBP)、转录因子(TF)和G-四链体(G4)结合蛋白。其次,可用于开发膜蛋白靶向降解的平台(例如双特异性适体嵌合体),核酸适体还可作为靶向递送工具,实现肿瘤特异性靶向降解。第三,核酸基序可作为靶向降解的底物用于治疗RNA疾病。一种新兴的RNA降解技术——核糖核酸酶靶向嵌合体(RIBOTAC)表明PROTAC的嵌合降解原理已扩展到RNA领域。本综述介绍了近年来新兴的基于核酸的TPD策略以及针对核酸(RNA)靶标的靶向降解新策略[3]。
23 Suvaxyn PCV 2 猪圆环病毒 猪 Zoetis 美国/巴西 ZOETIS MALAYSIA SDN. BHD. 灭活佐剂疫苗 猪圆环病毒 1 型-2 型嵌合体 TACB 25/08 2018 年 11 月 1 日 - 2023 年 10 月 31 日
尽管外显子组测序技术发生了革命性的变化,但仍有许多高度可遗传的神经发育障碍没有明确的单基因病因。目前,在这些疾病患者中已发现了一种独特的遗传变异类型——合子后体细胞变异(嵌合体)。最近的研究估计,患儿及其父母中遗传的体细胞变异会导致大约 3-5% 的单纯性家庭患自闭症的风险。此外,越来越多的证据表明,在自闭症、局灶性皮质发育不良 (FCD) 和半脑畸形 (HME) 等疾病中存在“脑受限”嵌合体。作为针对遗传疾病的新兴精准医疗(如通路特异性抑制剂和基因疗法),分子诊断变得越来越重要。在过去十年中,深度测序技术已经得到开发并被广泛用于可靠地识别具有低嵌合水平的单核苷酸变异 (SNV)。对于由 AKT-PI3K-MOT 通路的体细胞变异引起的 HME 和 FCD2 病例,随着选择性 MTOR、AKT3 和 PI3K 抑制剂的普及,识别潜在的分子原因变得越来越重要。