本出版物中的声明和建议基于我们对该产品典型应用的经验和知识,不构成性能保证,也不修改或改变我们适用于此类产品的标准保修。此处列出的行业认证特定于产品、材料和最终用途应用。请联系 Greene Tweed 应用工程部讨论您的特定材料认证需求。
摘要:能量管理策略对于发挥四轮驱动插电式混合动力汽车(4WD PHEV)的节能效果至关重要。针对4WD PHEV中复杂的多能量系统,提出一种新的双自适应等效消耗最小化策略(DA-ECMS)。该策略通过引入未来驾驶工况类别来调整等效因子,提高驾驶工况的适应性和经济性,优化多能量系统的管理。首先,采用自组织神经网络(SOM)和灰狼优化器(GWO)对驾驶工况类别进行分类,离线优化多维等效因子;其次,采用SOM进行驾驶工况类别识别,并匹配多维等效因子;最后,DA-ECMS完成前轴多能源与电驱动系统的多能量优化管理,释放4WD PHEV的节能潜力。仿真结果表明,与基于规则的策略相比,DA-ECMS经济性提高了13.31%。
2.2.5.e 对于应力集中区域的元件,即开口的拐角、主要支撑结构构件的肘板的趾部和跟部,在计算航海载荷工况(S + D 设计组合)的屈服利用系数时,材料的屈服应力不应大于 315 N/mm 2。当使用高强度钢不能提高高循环载荷下结构细节的疲劳强度时,这可用作控制高循环疲劳损伤的隐性方法。在许多情况下,由于结构中允许的应力较高,使用高强度钢建造的结构细节的疲劳损伤实际上比使用低碳钢建造的结构细节更严重。这种对高强度钢屈服强度利用的限制不适用于港口/油罐试验载荷工况(S 设计组合)。这些载荷工况所代表的相关失效模式是低周疲劳(重复屈服),可能由于加载/卸载顺序而发生。对于低周疲劳,疲劳强度随屈服强度的增加而增加,并且与材料的屈服强度成正比。另请参阅 2.3.5.h。
2.2.5.e 对于应力集中区域的元件,即开口的拐角、主要支撑结构构件的肘板的趾部和跟部,在计算航海载荷工况(S + D 设计组合)的屈服利用系数时,材料的屈服应力不应大于 315 N/mm 2。当使用高强度钢不能提高高循环载荷下结构细节的疲劳强度时,这可用作控制高循环疲劳损伤的隐性方法。在许多情况下,由于结构中允许的应力较高,使用高强度钢建造的结构细节的疲劳损伤实际上比使用低碳钢建造的结构细节更严重。这种对高强度钢屈服强度利用的限制不适用于港口/油罐试验载荷工况(S 设计组合)。这些载荷工况所代表的相关失效模式是低周疲劳(重复屈服),可能由于加载/卸载顺序而发生。对于低周疲劳,疲劳强度随屈服强度的增加而增加,并且与材料的屈服强度成正比。另请参阅 2.3.5.h。
为确保长期安全和性能,地质核废料处置库需要低渗透性屏障,如膨润土缓冲层和/或页岩围岩。页岩不仅渗透性低,而且容易发生随时间变化的变形(即蠕变),从而修复损伤,但页岩蠕变对核废料处置库长期性能的影响尚不清楚。特别是,页岩的各向异性(即层理)可能对其蠕变行为产生重大影响,从而影响核废料处置库的长期性能。在本研究中,进行了数值模拟,目的是展示各向异性页岩蠕变对页岩中通用地质核废料处置库的应力和渗透性演变的影响。模拟中使用了 TOUGH-FLAC 模拟器,这是一种热-水力 (THM) 耦合数值代码。为实现该目标,对各向异性页岩蠕变模拟结果与不同模拟工况(无蠕变(即弹性蠕变)、各向同性蠕变和长期蠕变页岩工况)的结果进行了比较。比较结果表明,弹性和各向同性蠕变页岩工况分别导致对处置库应力和渗透率的估计过高和低估,而长期蠕变页岩工况后期积累的蠕变大于前期,有助于在保持压缩球应力的同时抑制较大的剪应力和拉应力的形成,从而导致渗透率水平持续较低。这些结果表明,使用弹性和各向同性蠕变形成模型进行性能评估将提供应力和渗透率的上限和下限估计,而各向异性蠕变形成模型将给出更合理的估计,具有长期蠕变特性的页岩将对核废料处置库的安全性和性能的许多方面有益。
- SOL 101 – 线性静力学 - SOL 103 – 正常模式 - SOL 105 – 屈曲 - SOL 106 – 非线性和线性静力学 - SOL 107 – 直接复特征值 - SOL 108 – 直接频率响应 - SOL 109 – 直接瞬态响应 - SOL 110 – 模态复特征值 - SOL 111 – 模态频率响应 - SOL 112 – 模态瞬态响应 - SOL 129 – 非线性和线性瞬态响应 - SOL 153 – 静态结构和/或稳态传热分析,选项为:线性或非线性分析 - SOL 159 – 瞬态结构和/或瞬态传热分析,选项为:线性或非线性分析 - SOL 200 – 仅具有灵敏度分析选项的设计优化 - SOL 401 – 多步骤结构解决方案,支持静态(线性或非线性)子工况和模态(实特征值)子工况 - SOL 402 – 多步骤结构解决方案,支持子工况类型组合(静态线性、静态非线性、非线性动态、预载、模态、傅立叶、屈曲)并支持大旋转运动学 - SOL 601/106 – 高级非线性和线性静力学 - SOL 601/129 – 高级非线性和线性瞬态响应 - SOL 701 – 显式非线性
摘要:本出版物介绍了利用新版四级算法(FLA)对典型区域飞机机翼进行复杂参数强度研究的结果,该算法改进了负责分析气动载荷的模块。此版本的 FLA 以及基础版本都致力于通过同时使用不同的分解原理来显著减少复杂机身强度分析的时间和劳动力投入。基础版本包括机身四级分解和强度任务分解。新版本在确定临界载荷工况的过程中实现了对载荷工况替代变体的额外分解。这种算法非常适合具有广泛气动概念的区域飞机的强度分析和机身设计。本文对大展弦比机翼新版 FLA 的验证结果证实了该算法在减少设计初期机身强度分析的时间和劳动力投入方面的高性能。在参数化设计研究期间,获得了一些具有大展弦比的支柱支撑机翼的有趣结果。
摘要:无论在国防还是民用领域,都需要对远距离水下目标进行准确、快速的识别。然而,数据缺乏、舰船工况等因素会显著影响水下声目标识别(UATR)系统的性能。由于海洋环境非常复杂,UATR严重依赖于特征工程,人工提取的特征在统计模型中偶尔会失效。本文提出了一种基于卷积神经网络和注意力机制的端到端UATR模型。该网络模型以原始时域数据为输入,结合残差神经网络和密连接卷积神经网络,充分利用两者的优势。在此基础上,加入通道注意机制和时间注意机制,提取通道维度和时间维度上的信息。经过对实测的四种舰船辐射噪声数据集进行实验,结果表明,所提方法在不同工况下均获得了97.69%的最高正确识别率,优于其他深度学习方法。
摘要:准确预测剩余使用寿命(RUL)是保证锂离子电池安全稳定性的关键功能。为解决不同工况下的容量再生和模型适应性,提出了一种基于带自适应噪声的完全集合经验模态分解(CEEMDAN)和双向门控循环单元(BiGRU)的混合RUL预测模型。利用CEEMDAN将容量划分为固有模态函数(IMF)以降低容量再生的影响。此外,提出一种改进的灰狼优化器(IGOW)来保持BiGRU网络的可靠性。利用混沌帐篷映射提高GWO算法中初始种群的多样性,采用改进的控制因子和动态种群权重来加速算法的收敛速度。最后,进行容量和RUL预测实验,验证不同训练数据和工况下的电池预测性能。结果表明,所提出的方法仅使用 30% 的训练集即可实现小于 4% 的 MAE,并使用 CALCE 和 NASA 电池数据进行了验证。