责任限制/免责声明 MATLAB ® 是 The MathWorks, Inc. 的商标,经许可使用。MathWorks 不保证本书中文本或练习的准确性。本书对 MATLAB ® 软件或相关产品的使用或讨论并不构成 The MathWorks 对某种特定教学方法或 MATLAB ® 软件特定用途的认可或赞助。尽管出版商和作者已尽最大努力编写本书,但他们对本书内容的准确性或完整性不作任何陈述或保证,并特别声明放弃所有担保,包括但不限于对适销性或针对特定用途的适用性的任何默示担保。销售代表、书面销售材料或促销声明均不为本书提供或延长任何担保。本作品中提及某个组织、网站或产品作为引文和/或进一步信息的潜在来源并不意味着出版商和作者认可该组织、网站或产品可能提供的信息或服务或可能提出的建议。出售本作品时,出版商不提供专业服务。本文包含的建议和策略可能不适合您的情况。您应该在适当的情况下咨询专家。此外,读者应注意网站列表
在许多多代理交互的环境中,每个代理的最佳选择在很大程度上取决于其他代理的选择。这些耦合的相互作用可以用一般和差分博弈很好地描述,其中玩家有不同的目标,状态在连续的时间中演变,最佳博弈可以用许多均衡概念之一来表征,例如纳什均衡。问题通常允许多重均衡。从这种博弈中的单个代理的角度来看,这种多重解决方案可能会带来其他代理行为方式的不确定性。本文提出了一个通用框架,通过推理其他代理所追求的均衡来解决均衡之间的歧义。我们在多人人机导航问题的模拟中演示了这个框架,得出两个主要结论:首先,通过推断人类所处的平衡状态,机器人能够更准确地预测轨迹;其次,通过发现并使自己适应这种平衡状态,机器人能够降低所有玩家的成本。
摘要:随着量子计算的进步,人们进行了广泛的研究以寻找密码学领域的量子优势。将量子算法与经典密码分析方法(如差分密码分析和线性密码分析)相结合,有可能降低复杂性。在本文中,我们提出了一种用于差分密码分析的量子差分查找电路。在我们的量子电路中,明文和输入差分都处于叠加态。实际上,虽然我们的方法无法通过量子计算实现直接加速,但它通过依赖叠加态中的量子概率提供了不同的视角。对于量子模拟,考虑到量子比特的数量有限,我们通过实现 Toy-ASCON 量子电路来模拟我们的量子电路。
特殊说明 TM512AE0 单位 参数名称 参数符号 测试条件 最小值 典型值 最大值 低电平输出电流 Iol Vo =0.4V,ADRO 10 - - mA 高电平输出电流 Ioh Vo =4.6V,ADRO 10 - - mA 输入电流 Ii - - ±1 µA 差分输入共模电压 Vcm 12 V 差分输入电流 Iab VDD=5V 28 µA 差分输入临限电压 Vth 0V
(6)其他 a.须在投标开始前提交《资格审查结果通知书》副本。若您已经提交过,则无需再次提交。 若申请人由代表人或其他代理人代为竞投,则其须于竞投开始前提交《授权委托书》。 邮寄投标应清楚写明公司名称、投标日期和时间、投标主题,并用红色写明“投标书已附上”,并于7月17日星期三下午5点之前邮寄至下述地址。此外,投标人还将提前通过邮件收到投标意向通知。 如果您希望参加投标,您必须于7月12日星期五下午1:00之前通过传真或其他方式提交市场价格调查文件。 投标者在参与前必须同意《驻军使用标准合同》和《投标及合同指南》(在东部陆军会计司令部网站(https://www.easternarmy.gov/gsdf/eae/kaikei/eafin/index html)或在泷原驻军会计司令部办公室公布)。 通过提交您的出价,您将被视为承诺遵守“关于排除有组织犯罪集团的承诺”。投标文件中应当包含下列声明作为接受的表示: “本公司(本人(若为个人),本组织(若为组织))承诺遵守有关排除有组织犯罪的书面承诺事项。”此外,如果您拒绝提交有关上述“有关排除有组织犯罪的书面承诺事项”,则您将无法参与投标。(k)如果在最初的投标中已有通过邮寄方式提交投标的投标人,则重新投标的时间如下。
摘要 — 运算跨导放大器 (OTA) 是许多电子电路(如模拟滤波器和数据转换器)的重要组成部分。由于功耗低,低于 1V 的模拟电路在物联网 (IoT) 应用中越来越受欢迎。此外,人们还在探索基于数字的 OTA,以实现高能效。本文涉及一种基于反相器的 OTA 的实现,该 OTA 采用自偏置技术,通过实现差分差分放大器在共模频带中工作,以减轻在弱反相下工作的不必要变化。OTA 采用 180 nm CMOS 技术设计,由 0.9 V 电源供电。在 GBW 接近 36.66 MHz 的情况下实现了 52.22 dB 的直流增益。对于 10 pF 的负载电容,功耗为 203.71 µW。索引术语 — OTA 反相器、差分放大器、自极化、低压。
线粒体是细胞最佳功能的关键细胞器。在许多功能中,它们通过自己的蛋白质抑制剂机制维持蛋白质稳态,涉及蛋白酶和伴侣,这些蛋白酶和伴侣调节线粒体内部的蛋白质进口和折叠。在2000年代初期,哺乳动物细胞首先描述了线粒体展开的蛋白质反应(UPR MT)。通过线粒体基质中展开/错误折叠蛋白的积累积累来激活这种应力反应,这导致信号向细胞核传播以增加蛋白酶和伴侣的表达,以解决异常的线粒体蛋白质负载。在发现后,在其他不同复杂性的其他生物体中也描述了这种逆行信号通路,这表明它是一种保守的应激反应。尽管生物体之间存在一些特定的差异,但这种应力反应的机制主要相似,涉及从线粒体传播从线粒体传播到核的核,从而诱导染色质重塑以允许特异性转录因子与伴侣和蛋白酶的启动子和蛋白酶的启动子的结合。在过去的十年中,已经描述了可能与UPR MT调节有关的蛋白质和信号通路,包括Wnt信号通路。此MinireView旨在总结有关UPR MT机制及其调节的知识,该机理在哺乳动物和秀丽隐杆线虫中均具有特定的规定。
摘要 — 过去几年,随着量子计算硬件的快速发展,人们开发了多种量子软件堆栈 (QSS)。QSS 包括量子编程语言、优化编译器(将用高级语言编写的量子算法转换为量子门指令)、量子模拟器(在传统设备上模拟这些指令)以及软件控制器(将模拟信号发送到基于量子电路的非常昂贵的量子硬件)。与传统的编译器和架构模拟器相比,由于结果的概率性质、缺乏明确的硬件规格以及量子编程的复杂性,QSS 难以测试。这项工作设计了一种新颖的 QSS 差分测试方法,称为 QD IFF,具有三大创新:(1) 我们通过保留语义的源到源转换生成要测试的输入程序以探索程序变体。 (2) 我们通过分析电路深度、2 门操作、门错误率和 T1 弛豫时间等静态特性,过滤掉不值得在量子硬件上执行的量子电路,从而加快差分测试速度。(3)我们通过分布比较函数(如 Kolmogorov-Smirnov 检验和交叉熵)设计了一种可扩展的等效性检查机制。我们使用三个广泛使用的开源 QSS 评估 QD IFF:IBM 的 Qiskit、Google 的 Cirq 和 Rigetti 的 Pyquil。通过在真实硬件和量子模拟器上运行 QD IFF,我们发现了几个关键的错误,揭示了这些平台中潜在的不稳定性。QD IFF 的源变换可有效生成语义等价但不相同的电路(即 34% 的试验),其过滤机制可将差分测试速度提高 66%。
有了动态二人计划,该企业拥有并为关键雇员的寿命支付永久人寿保险政策。雇主保留收回较大的付费保费或政策现金价值的权利。员工对政策现金价值不保留或访问政策现金价值。在退休前,员工的受益人将使用已知和IRS批准的方法(认可分差价)获得免税福利。雇主每年在其W2表格上向雇员报告应纳税的“经济利益”。经济利益是使用保护性生活的一年期限寿命率或IRS表2001率的。
摘要 干电极的使用正在迅速增加。由于干电极的阻抗很高,因此在电极和放大器之间的连接节点处有一个高阻抗节点。这会导致吸收电力线信号,而高 CMRR 放大器对于消除这种情况至关重要。在本文中,我们提出了一种具有高 CMRR 的低功耗低噪声斩波稳定放大器。为了最大限度地降低输入参考噪声,采用了基于反相器的差分放大器。同时,设计了一个直流伺服环路来抑制电极的直流偏移。由于所有级都需要共模反馈,因此每个放大器都使用了合适的电路。此外,在最后一级实施了斩波尖峰滤波器以衰减斩波器的尖峰。最后,为了消除失配和后期布局造成的偏移效应,采用了直流偏移抑制技术。设计的电路采用标准 180 nm CMOS 技术进行仿真。设计的斩波放大器在 1.2 V 电源下仅消耗 1.1 l W。中频带增益为 40 dB,带宽为 0.5 至 200 Hz。其带宽内的总输入参考噪声为 1 l V rms。因此,设计电路的 NEF 和 PEF 分别为 2.7 和 9.7。为了分析所提出的斩波放大器在工艺和失配变化下的性能,进行了蒙特卡罗模拟。根据 200 次蒙特卡罗模拟,CMRR 和 PSRR 分别为 124 dB(标准偏差为 6.9 dB)和 107 dB(标准偏差为 7.7 dB)。最终,总面积消耗为 0.1 mm 2(不含焊盘)。