EDGER作者始终感谢接收软件包功能或文档中的错误报告。对于改进的精心考虑的建议也是如此。有关EDGER的所有其他问题或问题都应发布到生物导体支持网站https://support.bioconductor.org。请向支持网站发送一般帮助和建议的请求,而不是向个人作者发送。将问题发布到生物导体支持站点具有许多优势。首先,支持网站包括一个经验丰富的Edger用户社区,他们可以回答最常见的问题。第二,EDGER作者努力确保任何用户发布到生物导体的用户都会获得帮助。第三,支持网站允许其他具有相同问题的人从答案中获得。首次发布到支持网站的用户将发现阅读http://www.bioconductor.org/help/support/posting-guide的发布指南很有帮助。
差异相对比对比(DPC)扫描透射电子显微镜(STEM)最近引起了显着的兴趣,可以在高空间分辨率下绘制静电和磁场的映射。然而,由于其对静电和磁场的同时敏感性,磁性样品上DPC测量的解释并不直接。在这项工作中,我们证明了对洛伦兹力的两个贡献可以通过电子束的时间反转操作分离。在实践中,通过重复将样品升至180后,可以通过重复DPC-STEM测量来轻松实现这种情况。两种贡献的分离允许区分静电电势的影响,例如,具有均匀成分的样品中的厚度变化与实际磁信号。这种方法与DPC-stem或更普遍地通过4D词干对磁纳米结构的研究特别相关。
摘要 - 使用玻璃碳电极与化学计量学结合的吸附性剥离伏安法(ADSV),以同时测定茶样中的咖啡因,obromine和Theopherline,从而提供高选择性,敏感性,简单性,简单性和成本效率。最佳电化学条件为0.01 mol.l -1 H 2 SO 4,吸附电位为0.6V,而AG/AGCL/KCL为0.025 V/s的扫描速率,吸附时间为60 s。每种化合物的线性校准图在1.0×10 -6至4.0×10 -5 mol.l -1,1.0×10 -6至3.0×10 -5 mol.l -1和1.0×10 -6至1.0×10 -6至1.4×1.4×10 -5 mol中获得了每种化合物的线性校准图。l -1分别用于咖啡因,obromine,Theophlilline。在这项研究中,尽管混合物中的咖啡因,鲜红球和茶碱的伏安峰重叠,但作为化学计量技术(例如部分最小二乘(PLS),主成分回归(PCR)和经典最小二乘(Clasical Distical Squares(Cls)),不需要一个前分离步骤。在三个多元线性回归中,选择了PLS方法,因为它的相对误差最小,均小于±11.1%。相比之下,CLS的性能较差,相对达到±83%。提出的新方法被应用于同时确定茶样中的咖啡因,鲜血和茶碱。与使用高性能液相色谱(HPLC)获得的结果相比,结果没有显着差异。
DSC 500PEGASUS®系统可以配备各种不同的熔炉,可容纳不同温度和施用范围-150°C和2000°C之间。银和钢炉可用于亚凸式温度范围。通过液氮冷却装置或涡流管实现了控制冷却。对于更高温度范围,SIC,PT,RH和石墨炉提供。与专用DSC传感器结合使用的铂和犀牛炉非常适合确定较高温度范围内的特定热容量。其用户友好的设计允许操作员轻松替换管子,从而最大程度地减少停机时间。
集中式差分隐私已成功应用于量子计算和信息处理,以保护隐私并避免相邻量子态之间连接中的泄漏。因此,量子局部差分隐私 (QLDP) 已被新提出以保护量子数据隐私,类似于所有状态都被视为相邻状态的经典场景。然而,QLDP 框架的探索仍处于早期阶段,主要是概念性的,这对其在保护量子态隐私方面的实际实施提出了挑战。本文对 QLDP 进行了全面的算法探索,以建立一个实用且可行的 QLDP 框架来保护量子态隐私。QLDP 使用参数 ε 来管理隐私泄漏并确保单个量子态的隐私。对于任何量子机制,QLDP 值 ε 的优化(表示为 ε ∗ )都是一个优化问题。结果表明,量子噪声的引入可以提供与经典场景类似的隐私保护,量子去极化噪声被确定为 QLDP 框架内的最佳单元私有化机制。单元机制代表了一组多样化的量子机制,涵盖了经常使用的量子噪声类型。量子去极化噪声优化了保真度和迹线距离效用,这是量子计算和信息领域的关键指标,可以看作是经典随机响应方法的量子对应物。此外,提出了一个组合定理,用于将 QLDP 框架应用于分布式(空间分离)量子系统,确保有效性(QLDP 值的加性),而不管状态的独立性、经典相关性或纠缠(量子相关性)。该研究进一步通过分析和数值实验方法探讨了不同量子噪声机制(包括单元和非单元量子噪声机制)之间效用和隐私之间的权衡。同时,这突出了 QLDP 框架中量子去极化噪声的优化。
DSC测量的快速启动系统DSC 300Caliris®经典提供了一种快速方法,可以将差分扫描量热法引入您的实验室。在设置和校准仪器后,简化而直观的SmartMode用户界面将指导您定义测量参数。完成测量后,自动评估和识别软件功能将负责将您的结果与已知参考或文献值进行比较的时间耗尽的任务。这些例程在评估测量曲线的评估中提供了支持,并作为评估未知样本的第二意见。识别数据库系统能够验证材料并允许进行质量保证测试。
多年来,抑制最小二乘(DLS)算法一直是优化操作系统的选择方法。dls需要评估雅各布的优化操作数,这通常由fi-nite di ff herences进行。尽管有限差异方法的简单性具有一些主要的缺点,即对许多功能评估的需求及其有限的稳定性和精度。作为一种替代算法二元(AD)[1],已在包括镜头设计在内的许多学科中使用[2],通常被称为Di ff构成射线跟踪,主要用于端到端设计的上下文[3]。AD的基本思想是用链条规则来描述可以通过链条来划分的优化操作数的组合。取决于应用链条规则的方向,该方法称为AD向前模式或AD反向模式。在此贡献中,我们提出了一种方法,可以在前和重复模式下使用AD稳定地计算Jacobian。这使我们可以使用伪牛顿方法,例如DLS,而不是基于一阶梯度的甲基ODS进行优化。用于射线表面相交的分化的数学分析可以实现性能。对于具有许多优化参数的自由式设计,这证明了这一点,因为已知这些系统特别具有挑战性[4]。
摘要。3D高斯碎片在实时神经渲染中引起了广泛的关注和应用。同时,人们对这种技术在稀疏观点中的限制,绩效和鲁棒性等方面引起了人们的关注,从而导致了各种改进。然而,显然缺乏关注分裂本身固有的局部仿射近似引入的投影错误的基本问题,以及这些错误对照片真实渲染质量的结果影响。本文介绍了3D gaus-sian脱落的投影误差函数,从投影函数的一阶泰勒膨胀开始,从剩余的误差开始。分析建立了误差与高斯平均位置之间的相关性。subsemess,利用功能优化理论,本文分析了该函数的最小值,以提供最佳的投影策略,以涉及最佳的高斯分裂,这可以使各种摄像机模型可观。实验验证进一步提出了这种投影方法可以减少伪影,从而导致更令人信服的现实渲染。
脑脊液(CSF)和血浆中神经素制轻链(NFL)的浓度已成为许多神经退行性疾病的关键生物标志物,包括亨廷顿氏病(HD)。然而,CSF中NFL浓度的动力学与神经变性(全脑萎缩)的时间顺序之间的关系尚未以定量和机械的方式描述。在这里,我们提出了一种新型的半机械模型,该模型假定进入CSF的NFL量对应于受损神经元释放的NFL量,其退化导致大脑体积的减少。在数学术语中,该模型以脑组织的NFL浓度,整个大脑体积的变化率和CSF流量率表示了CSF的NFL浓度。为了测试我们的模型,我们使用了非线性混合效应方法来分析HD-CSF研究的NFL和大脑量数据,这是对具有前命中率HD,明显HD和健康对照的个体的24个月前瞻性研究。从MRI获得的整个大脑体积的时间顺序以二阶多项式在经验上表示,从中计算出其变化速率。CSF流量率是从最近的文献数据中获取的。 通过估计脑组织中的NFL浓度,该模型成功地描述了HD受试者和健康对照中CSF中NFL浓度的时间顺序。 此外,大脑中NFL浓度的模型衍生的估计值与最近的直接实验测量非常吻合。 讨论了我们的半机械NFL模型在其他神经退行性疾病中的应用。CSF流量率是从最近的文献数据中获取的。通过估计脑组织中的NFL浓度,该模型成功地描述了HD受试者和健康对照中CSF中NFL浓度的时间顺序。此外,大脑中NFL浓度的模型衍生的估计值与最近的直接实验测量非常吻合。讨论了我们的半机械NFL模型在其他神经退行性疾病中的应用。我们模型与NFL和脑量数据的一致性表明,CSF中的NFL浓度反映了神经变性的速率而不是范围,而NFL浓度随时间的增加是衡量与老化和HD相关的神经变性速率加速的量度。对于HD受试者,发现加速度的程度显着增加,其HTT基因上的CAG重复次数。对于HD受试者,发现加速度的程度显着增加,其HTT基因上的CAG重复次数。
直接测量(电流和电压为0.2级)的高精度范围较大的电流输入允许将同一设备连接到1 a和5 a ct次级通过前USB连接您,您可以访问设备以访问设备以检索外部CID,加载外部CID,加载防火墙配置或更新设备固定设备固定协议,pt communcotions prody pts vers ints ints int concommance IRIG-B输入或PPS输入,PACFACTORY或显示用于监视和设置的Web服务器,无需其他软件网络安全功能:SFTP,HTTP,防火墙,审核日志,访问,RBAC,LDAP,会话管理...按IEC 61869-9(NCIT)和IEC 611850-9-2LE(NCIT)和SAME