匹兹堡大学物理与天文学系,宾夕法尼亚州匹兹堡 15260 * 通讯作者,电子邮件:pth9@pitt.edu 摘要 量子信息科学是一个快速发展的跨学科领域,吸引了学术界和行业专家的广泛关注。它需要来自各种传统领域的人才,包括物理学、工程学、化学和计算机科学等。为了让学生为这样的机会做好准备,重要的是让他们打下坚实的量子信息科学基础,量子计算在其中起着核心作用。在本研究中,我们讨论了布洛赫球面教程的开发、验证和评估,布洛赫球面是一种有用的可视化工具,可用于培养对单个量子比特(量子位)的直觉,而单个量子比特是任何量子计算机的基本组成部分。在学生接受有关必修主题的传统讲座式指导后,以及在参与教程后,我们对他们的理解进行了评估。我们观察、分析并讨论他们在教程中涵盖的概念上的表现进步。简介 量子信息科学与工程 (QISE) 是一个令人兴奋的跨学科领域,可在量子计算、量子通信和网络以及量子传感中应用,这些应用因多种原因而吸引着科学家和工程师。计算机科学家和工程师正在开发用于解决各种问题的量子算法,包括传统计算机无法大规模解决的问题。例如,在传统计算机上,对大素数乘积进行因式分解的问题会随着素数的大小呈指数增长,但在使用 Shor 算法的量子计算机上,该问题的大小大致为多项式。对于未来科学应用,物理学家和化学家也对量子计算机解决其学科中重要问题的潜力感到兴奋,其中求解薛定谔方程起着重要作用。开发强大的量子比特 (qubit) 和可扩展的量子计算机需要物理学家和工程师的专业知识。由于所有这些原因以及其他原因,这一研究领域对于许多来自科学和工程学科、对 QISE 相关领域感兴趣的学生来说,具有巨大的发展前景 [1,2]。用于介绍量子态及其可视化的教学工具之一是 Bloch 球,它允许可视化量子比特(量子计算机的基本功能单元)的状态。它可以成为理解双态系统特性的重要而有力的辅助手段,但学生往往难以理解。此外,Bloch 球是当前研究(包括量子传感和断层扫描)中非常有用的工具,该领域的实验者经常使用它来表征工作中的单个量子比特。布洛赫球面可以让人们以图形方式了解单量子比特状态,包括通过密度矩阵的混合状态,以及可以通过单量子比特门完成的操作。
我们报告了用于新兴低温量子电子学平台的布洛赫晶体管 (BT) 的开发情况。BT 是一种完全量子非耗散设备,有助于将量化电流精确传输到电路,I =2 efn(其中 n 是整数,e 是电子电荷,f 是微波频率)。它在经典电子学中没有类似物,但它是量子电子学所必需的。量化电流的幅度可通过四个控件进行调整:栅极或偏置电压以及微波的频率或幅度。该设备具有在布洛赫振荡范围内工作的约瑟夫森结、隔离电磁电路和微波馈电引线。BT 在 ∼ 5 µ V 的偏置下工作,可以提供高达 10 nA 的量化电流。
量子几何是区分晶体中电子和真空中电子的关键量。对量子几何的研究继续为量子材料提供见解,揭示发现量子材料的新设计原则。然而,与贝里曲率不同,对量子度量缺乏直观的理解。在这里,我们表明布洛赫电子的量子度量导致动量空间引力。特别是,通过将电子动力学的半经典公式扩展到二阶,我们发现所产生的速度被测地线项修改,并成为弯曲空间中洛伦兹力的动量空间对偶。我们计算了魔角扭曲双层石墨烯的测地线响应,并表明具有平带的莫尔系统是观察这种效应的理想候选者。将这种与重力的类比进一步扩展,我们发现爱因斯坦场方程的动量空间对偶对于纯态仍然无源,而对于混合态,它获得一个取决于小熵的冯·诺依曼熵的源项。我们将该应力能量方程与广义相对论的弱场极限进行比较,得出冯·诺依曼熵是引力势的动量空间对偶的结论。因此,混合态的动量空间测地线方程被一个类似于熵力的项所修改。我们的研究结果强调了量子几何、动量空间引力和量子信息之间的联系,促使人们进一步探索量子材料中的这种对偶引力。
F-2022-00068 埃丁顿,帕特里克·卡托研究所美国国务院关于以下民间社会组织的记录:1. 美国军人联盟,2. ASOGUA(危地马拉团结组织),3. 巴尔的摩福利权利组织,4. 阻止黑格联盟,5. 声援萨尔瓦多人民委员会 (CISPES),6. 关心非洲的公民委员会,7. DC Nica(尼加拉瓜团结组织),8. EPICA,9. 菲律宾人民之友,10. 海地之友,11. 下东区和平动员组织,12. 卫理公会社会行动联合会,13. 生存动员组织,14. 全国反征兵网络,15. 全国黑人通信联盟,16. 纽约国防和正义执事会,17. 南非军事难民援助组织基金、18. 三代斗争、19. 华盛顿地区反对登记和征兵联盟 (WACARD)、20. 华盛顿和平中心、21. WESPAC 和 22. 妇女和平罢工(记录搜索的日期范围:从 1980 年 11 月 1 日到 2021 年 10 月 1 日)
数值应用。• 掌握在各种实验情况下将电子视为准粒子的概念。• 能够根据实验情况决定哪种金属模型(德鲁德、索末菲和布洛赫模型)最合适。• 理解经验伪势、布洛赫波包、电子群速度、空穴、布洛赫振荡的概念。• 理解布洛赫电子的量子描述与电导率的宏观特性之间的关系以及杂质、电子-电子相互作用和电子-声子相互作用的作用。• 掌握功函数、接触偏置、界面极化电荷的肖特基模型以及流过结的电流建模的概念。• 理解驱动微电子和纳米电子设备的量子效应。• 能够通过与实验数据单位的严格联系,将理论物理的详细章节转化为具有合理物理意义的数值应用。这一目标将通过与课程和高级数值方法的实践练习的紧密重叠来实现。