BVB模型提出,在LBD的大多数情况下,第一个病理α-突触核蛋白聚集体在肠道或嗅球中形成(图1)4,10-13。在身体优先的LBD中,路易病病理学起源于肠道的肠神经系统,并通过副交感神经迷走神经和交感神经自主神经纤维侵入大脑。这些身体优先的患者通常会在临床诊断前几年出现自主症状和REM睡眠行为障碍(RBD)。相比之下,大多数具有大脑优先LBD的病例是在鼻子的嗅觉上皮触发的,Lewy病理学通过嗅觉神经侵入大脑。通过这种途径,病理可以更快地到达多巴胺能细胞,因此脑率先LBD的前瞻相位较短。脑前患者通常在诊断前不会出现自主问题或RBD,但是大多数患者会在诊断后出现这些症状;但是,大多数人将在后来出现这些症状,因为扩散病理不可避免地会影响LBD晚期阶段的神经系统的所有部位。因此,尽管身体和脑前患者的开始差异很大,但随着疾病的发展,他们变得越来越相似。
运动,动作的动作,运动迟缓,平衡差,依赖运动减少以及在说话,遗传和便秘期间的面部表情变化(9,10)。此外,PD中痴呆症的风险约为相同年龄和性别的对照组的6至8倍,长期患病率约为80%(11)。语音障碍也很普遍,包括音质肌音障碍,语音障碍,发音和速率以及响度降低,元音集中和不精确的辅音(10,12,13)。除了身体问题外,这些患者还会出现并发症,例如抑郁,焦虑,精神困扰症状和冷漠,每种都会影响患者的生活质量(14,15)。当前,PD没有简单易用的确定性治疗方法。因此,PD在家里或医院对看护人构成了许多挑战。如果护理人员是患者的配偶,他们经常被迫改变角色,必须长期扮演其配偶的角色(16,17)。在住院治疗的情况下,应旨在改善这些患者的健康状况并防止住院并发症(18-21)。改善住院患者健康的一种方法是在ICU中提供医疗和护理,这就是为什么与呼吸机相关的指标是必不可少的考虑因素的原因(22-25)。
帕金森氏病(PD)是一种毁灭性的运动,在全球流行率上加速了,但是缺乏精确的症状测量使得有效疗法的发展具有挑战性。统一的帕金森统一级评级量表(UPDRS)是评估运动症状严重程度的黄金标准,但其手动评分标准含糊不清,既模糊又主观,导致了粗糙和嘈杂的临床评估。机器学习方法有可能通过使PD症状评估现代化,以使其更具定量,客观和可扩展性。但是,缺乏用于PD运动考试的基准视频数据集阻碍了模型开发。在这里,我们介绍了郁金香数据集以弥合此差距。Tulip强调预先挑剔和全面性,包括25种UPDRS运动考试活动的多视频记录(6张摄像机),以及3位临床专家的评级,在帕金森氏症患者和健康对照组中。多视图记录实现了身体运动的3D重建,该重建更好地捕获疾病特征,而不是更多的调用2D方法。使用数据集,我们建立了一个基本线模型,用于预测3D姿势的UPDRS分数,以说明如何自动化现有诊断。展望未来,郁金香可以帮助开发超过UPDRS分数的新的精确诊断,从而深入了解PD及其潜在治疗方法。
帕金森氏病(PD)涉及大脑能量稳态的破坏。这包括宽大的因素,例如线粒体功能障碍,糖酵解受损和其他代谢障碍,例如五肽磷酸盐途径和嘌呤代谢的破坏。皮质枢纽是高度连接的区域,对于协调多个大脑功能所必需的区域,由于其密集的突触活动和远距离连接而需要明显的能量。PD中ATP产生的缺陷会严重损害这些枢纽。 能量不平衡还会影响皮层下区域,包括由于其高代谢需求而导致黑质nigra pars compacta神经元的纹状体中的巨大轴突轴。 这种ATP下降可能会导致α-突触核蛋白的积累,自噬 - 溶酶体系统损伤,神经元网络分解和加速神经变性。 我们提出了一个“ ATP供应 - 需求不匹配模型”,以帮助解释PD的发病机理。 该模型强调ATP缺陷如何驱动病理蛋白质聚集,自噬受损以及关键脑网络的变性,从而有助于运动和非运动症状。PD中ATP产生的缺陷会严重损害这些枢纽。能量不平衡还会影响皮层下区域,包括由于其高代谢需求而导致黑质nigra pars compacta神经元的纹状体中的巨大轴突轴。这种ATP下降可能会导致α-突触核蛋白的积累,自噬 - 溶酶体系统损伤,神经元网络分解和加速神经变性。我们提出了一个“ ATP供应 - 需求不匹配模型”,以帮助解释PD的发病机理。该模型强调ATP缺陷如何驱动病理蛋白质聚集,自噬受损以及关键脑网络的变性,从而有助于运动和非运动症状。
抽象背景步态干扰是普遍的,症状衰弱,帕金森氏病(PD)个体的流动性和生活质量降低。虽然传统治疗可提供部分缓解,但人们对应对这一挑战的替代干预措施越来越感兴趣。最近,目睹了辅助技术(AT)开发的巨大激增,以帮助PD患者。目的是探索用于减轻与PD相关的步态障碍的干预措施的新兴景观,并描述与此目的有关的当前研究。在这篇评论中,我们在PubMed上搜索了英文发表的论文(2018-2023)。此外,读取每项研究的摘要以确保包含。四名研究人员独立搜索,包括根据我们的包容和排除标准进行的研究。结果我们纳入了符合所有纳入标准的研究。我们确定了PD中步态参数分析辅助技术的关键趋势。这些包含可穿戴的传感器,步态分析,实时反馈和提示技术,虚拟现实和机器人技术。结论本综述为指导未来的研究,告知临床决策并促进研究人员,临床医生和决策者之间的合作提供了资源。通过描述这种快速发展的场的轮廓,它旨在激发进一步的创新,最终通过更有效和个性化的干预措施改善PD患者的生活。
抽象的越来越多的证据表明,帕金森氏病(PD)与大脑中胰岛素失调之间存在联系,而PD与2型糖尿病(T2DM)之间的联系仍在争议。胰岛素被广泛认为在神经元存活和脑功能中起着至关重要的作用。胰岛素代谢和信号传导的任何变化都可以导致各种脑部疾病的发展。有累积的证据将T2DM与PD和其他神经退行性疾病联系起来。实际上,它们在病理学上有很多共同的病理学,包括胰岛素失调,氧化应激导致线粒体功能障碍,小胶质细胞激活和炎症。因此,初步研究应集中于胰岛素及其分子机制的作用,以发展治疗结果。在当前的综述中,我们将研究T2DM和PD之间的联系,胰岛素在大脑中的功能以及与胰岛素在引起T2DM和PD中的影响有关的研究。此外,我们还强调了T2DM和PD中各种胰岛素信号通路的作用。我们还建议,T2DM靶向药理学策略是认知障碍患者的潜在治疗方法,我们通过当前的PD治疗试验证明了T2DM处方药的有效性。总而言之,这项研究将填补与T2DM相关的帕金森氏病(PD)的研究空白,并具有潜在的治疗选择。
1)Hattori N,Funayama M,Imai Y等人:PAR -Kinson病的发病机理:从单基因家族性PD到生物标志物的提示。J神经传输(维也纳),2024年2)Funayama M,Ohe K,Amo T等:常染色体显性后期 - 发病帕金森氏病中的CHCHD2突变:GE -NOME - 广泛的链接和测序研究。柳叶刀神经14:274 - 282,2015年3月3日)Kitada T,Asakawa S,Hattori N等:PAR中的突变 - 亲属基因引起常染色体隐性膜肌parkinsonism。自然392:605 - 608,1998 4)Oji Y,Hatano T,Ueno Si等人:Saposin d do中的变体 - 与帕金森氏病有关的Prosaposin Gene的主要基因。Brain 143:1190 - 1205,2020 5)Yoshino H,Li Y,Nishioka K等人:基因型 - 帕金森氏病与PRKN变体的关系。 Neuro - biol Aging 114 : 117 – 128, 2022 6 ) Hattori N, Kitada T, Matsumine H et al : Molecular genetic analysis of a novel Parkin gene in Japanese families with au - tosomal recessive juvenile parkinsonism : evidence for varia - ble homozygous deletions in the Parkin gene in affected indi - viduals. Ann Neurol 44:935 - 941,1998 7)Daida K,Funayama M,Billingsley KJ等人:Long - Read - Read Se -quencing -quencing -wecorl prkn Parkinson病中的复杂结构变体。 MOV DISORD 38:2249 - 2257,2023 8)Brain 143:1190 - 1205,2020 5)Yoshino H,Li Y,Nishioka K等人:基因型 - 帕金森氏病与PRKN变体的关系。Neuro - biol Aging 114 : 117 – 128, 2022 6 ) Hattori N, Kitada T, Matsumine H et al : Molecular genetic analysis of a novel Parkin gene in Japanese families with au - tosomal recessive juvenile parkinsonism : evidence for varia - ble homozygous deletions in the Parkin gene in affected indi - viduals.Ann Neurol 44:935 - 941,1998 7)Daida K,Funayama M,Billingsley KJ等人:Long - Read - Read Se -quencing -quencing -wecorl prkn Parkinson病中的复杂结构变体。MOV DISORD 38:2249 - 2257,2023 8)
在没有硫酸盐的深海中,微生物从有机物中产生了大量的43甲烷。然而,ANME古细菌在SMTZ中消耗了超过80%的气体(21、31、56)。由于这种有效的微生物过滤器,只有2%的大气45甲烷来自海洋(56)。如果以气体水合物和永久冻土形式的甲烷46沉积物因气候变暖而不稳定(59),则该数字可能会增加。47取决于电子捐赠者和受体的通量,SMTZ发生在几十毫米的深处(例如冷渗水)至海床以下几百米(深缘49个沉积物)(31、34、58)。SMTZ的位置进一步取决于底物的数量和物理50个特征,系统的沉积物类型和动力学(7,63)。深SMTZ中的51个AOM速率较低,每天每52毫升的纳莫尔斯到少数纳莫尔斯的范围。因此,这些环境中的ANME细胞数量低53,<10 6细胞CM -3,而ANME -1型通常占上风(39,45,51)。如果存在,则在这些视野中也将短链54烷烃氧化(50,62)。55
帕金森氏病(PD)是一种进行性神经退行性疾病,其特征是中脑在多巴胺神经元的连续和选择性变性或死亡,导致骨皮质神经回路功能障碍。当前的PD临床治疗包括药物治疗和手术,这些治疗和手术可以短期缓解症状,但与许多副作用有关,并且无法逆转PD的进展。多能/多能干细胞具有自我更新能力,并且具有分化为多巴胺能神经元的潜力。多能/多能干细胞或从这些细胞中得出的多巴胺能神经元的移植是对PD中完全修复受损神经回路的有前途的策略。本文回顾并总结了PD的当前临床前/临床处理,其效率以及各种干细胞的优点/缺点,包括多能和多功能干细胞,以详细的概述,以详细概述这些细胞如何应用这些细胞处理PD的处理,以及挑战和挑战,以便在挑战和刺激下进行概述。
低血压的特征是面部表达降低,是帕金森氏病(PD)的基本特征。但是,与PD中的肢体不对称不同,面部不对称性的探索较少。在这里,我们使用人工智能(AI)和图像处理技术探讨了PD中可能的细微半型症。在从102名PD受试者和97个健康对照组(HCS)的视频预处理视频预处理视频后,计算了每个框架跨面部标志的不对称指数值。动态特征被提取并用于机器学习模型中,以区分PD和HC,达到91.4%的精度。PD受试者表现出更大的面部不对称性,尤其是在眉毛周围(P = 0.01)和嘴巴(P = 0.04),并且患有不对称的肢体帕金森氏症患者在受影响较大的一侧表现出较小的面部迁移率(P = 0.001)。这些发现支持PD中面部表达不对称性的存在,尤其是在幸福表达期间,并提出了其作为临床数字生物标志物的潜力。