光源应产生至少在 3.1 J.lIn 至 3.6 J.lIn 范围内连续可调的窄带宽辐射,以便用于红外 DIAL 应用。这是基本碳氢拉伸吸收的区域,是许多工业重要物种的关键光谱特征。本报告中讨论的光源均设计为在近红外区域运行。中红外的目标波长将通过将近红外输出与光学参量放大器 (OP A) 中的 1 ~m 泵混合来获得。这种混合机制决定了近红外的波长规格,这是一种可在 1.5 !lIn 和 1.6~m 之间调谐的窄带宽源。
所有 UAV 都需要无线通信技术来实现实时应用。小型 UAV 上通常需要低带宽遥测链路来实现指挥和控制 (C2) 以及系统健康监测。如果 UAV 配备了实时电光或红外 (EO/Ir) 摄像机有效载荷,则通常需要专用的高带宽模拟/数字链路来实现可靠的高分辨率图像。在大多数情况下,无线遥测和实时视频链路都将通过单位增益全向天线集成到 UAV 中。由于机载功率和有效载荷容量有限,小型 UAV 向用户传输的射频 (RF) 能量数量将受到限制。因此,“可打包”和“便携式” UAV 对急救人员的有效操作范围有限。
应用程序对网络的带宽需求越来越大。在这些战术网络中运行的系统必须能够在这种不可靠和拥挤的通信环境中提供可靠、及时的信息交换。需要结合多种技术的创新解决方案来成功应对这些挑战并实现网络中心战的目标。面向服务架构 (SOA) 等客户端-服务器方法通常被采用为在更高级别的指挥和控制网络上运行的军事系统中实现应用程序和服务的基础。在受网络分区影响的不可靠带宽受限战术环境中,客户端-服务器架构可能会引入集中式故障点和性能瓶颈。此外,当数据发送到大量客户端时,单播点对点连接会导致过多的带宽消耗。对等 (P2P) 方法不依赖于必须可访问的指定服务器节点,因此可以在分区网络中继续(部分)运行。此外,P2P 系统可以利用多播和其他高级数据分发方案,最大限度地减少冗余信息的传输。最后,由于通信不需要通过中央服务器进行路由,因此 P2P 技术可以利用许多应用程序更重视节点之间的通信这一事实
摘要 - 在此处考虑了动态无线设置中多类调度的问题,其中可用有限的带宽资源分配以处理随机服务需求到达,而在有效载荷数据请求,延迟公差和重要性/优先级方面属于不同类别。除了异质流量外,另一个重大挑战还来自由于时间变化的沟通渠道而导致的随机服务率。现有的调度和资源分配方法,范围从简单的贪婪启发式和受限优化到组合设备,是针对特定网络或应用程序配置量身定制的,通常是次优的。在此帐户中,我们求助于深入的增强学习(DRL),并提出了分配深层确定性策略梯度(DDPG)算法,并结合了深度设置以解决上述问题。此外,我们提出了一种使用决斗网络的新颖方式,这将进一步提高绩效。我们所提出的算法在合成数据和实际数据上都进行了测试,显示了对组合和优化的基线方法的一致增长,以及状态调度计划指标。我们的方法可以使用Knapsack优化的功率和带宽资源降低13%的功率和带宽资源。
摘要:薄膜硅锂(TFLN)是一个有前途的电磁光(EO)光子平台,具有高调制带宽,低驱动电压和低光学损耗。然而,已知TFLN中的EO调制可以在长时间尺度上放松。取而代之的是,热通加热器通常用于稳定的偏置,但是加热器会带来交叉言论,高功率和低带宽的挑战。在这里,我们表征了TFLN调节剂的低频(1 MHz至1 MHz)EO响应,研究EO松弛的根本原因,并展示了改善偏置稳定性的方法。我们表明,与弛豫相关的效果可以增强我们设备中跨越1KHz至20kHz的频带的EO调制 - 这是一个反直觉的结果,可以混淆TFLN调制器中半波电压(Vπ)的测量。我们还表明,通过控制LN金属界面和退火,可以通过10 4倍的速度减慢EO放松,从而为寿命稳定的EO偏置提供了进步。这种强大的EO偏置将使跨言,功率和偏置带宽至关重要的TFLN设备的应用,例如量子设备,高密度集成光子学和通信。
3 方法.................................................................................................................................................................................................................................17 3.1 技术评估....................................................................................................................................................................................................17 3.1.1 要求....................................................................................................................................................................................................................17 3.1.2 数据传输方法....................................................................................................................................................................................17 3.1.2 数据传输方法....................................................................................................................................................................17 . 17 3.1.3 数据带宽 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 26
摘要 - 近年来,用于被动遥感的频率已扩展到毫米和亚毫米波区域。由于波长相对较短,在天线尺寸限制下可以实现较窄的光束宽度。反过来,可以实现更好的空间分辨率,这对于地静止轨道的传感器尤为重要。在地球静止轨道上有几项关于毫米和亚毫米波有效载荷的任务建议,例如,欧洲国家提出的微波大气音(GOMAS)的地球静态观测站,地球同步微波(GEM)Microwave(GEM)Sounder/Imager观察系统,美国下一代官员, 目前正在进行地进行地静止的微波有效载荷以及毫米和亚毫米波大气的仿真数据的可行性研究。 许多措施评估了大气发声数据的效率,其中之一是信号的自由度(DFS)。 它与特定回归算法无关,因此能够对性能比较和通道参数优化进行客观度量。 在本文中,分析了一组毫米波(50 〜70 GHz,118 GHz,183 GHz)和亚毫米波(380 GHz,425 GHz)的DFS。 给出了随着带宽增加的DFS改进;结果表明,更广泛的通道带宽将改善未来地静止轨道毫米和亚毫米波辐射仪的效率和检索性能。目前正在进行地进行地静止的微波有效载荷以及毫米和亚毫米波大气的仿真数据的可行性研究。许多措施评估了大气发声数据的效率,其中之一是信号的自由度(DFS)。它与特定回归算法无关,因此能够对性能比较和通道参数优化进行客观度量。在本文中,分析了一组毫米波(50 〜70 GHz,118 GHz,183 GHz)和亚毫米波(380 GHz,425 GHz)的DFS。给出了随着带宽增加的DFS改进;结果表明,更广泛的通道带宽将改善未来地静止轨道毫米和亚毫米波辐射仪的效率和检索性能。
摘要 - 批判是基于激光雷达的对象检测方法的主要挑战,因为它使自我车辆无法观察到的感兴趣区域。提出的解决此问题的解决方案来自通过车辆到所有(V2X)通信的协作感知,这要归功于在多个位置存在连接的代理(Vehilect和智能路边单位)的存在,以形成完整的场景表示。V2X合作的主要挑战是绩效 - 带宽折衷方案,它提出了两个问题(i)应该在V2X网络上交换哪些信息,以及(ii)如何融合交换的信息。当前最新的最新方法可以解决中期方法,其中传达了点云的鸟眼视图(BEV)图像,以使连接剂之间的深层相互作用,同时减少带宽消耗。在达到强大的性能时,大多数中期方法的现实部署都受到过度复杂的体系结构和对代理间同步的不切实际的假设的阻碍。在这项工作中,我们设计了一种简单而有效的协作方法,基于从每个代理商中交换输出,从而实现更好的带宽性能折衷,同时最大程度地减少了单车检测模型所需的更改。此外,我们放宽了现有的有关代理间同步的最新方法中使用的假设,仅需要在连接的代理之间进行常用时间参考,这可以在实践中使用GPS时间实现。该代码将在https://github.com/quan-dao/practical-collab-ception中发布。在V2X-SIM数据集中进行的实验表明,我们的协作方法达到76.72平均平均精度,这是早期协作方法的性能99%,同时消耗了与晚期协作一样多的带宽(平均为0.01 MB)。