超低功耗图像传感器,专为始终开启的视觉设备和应用而设计 高灵敏度 3.6μ BrightSense(TM) 像素技术 324 x 324 有效像素分辨率,支持 QVGA 窗口、垂直翻转和水平镜像读出 30FPS 时 <1.1mW QQVGA 分辨率,30FPS 时 < 2mW QVGA 分辨率 可编程黑电平校准目标、帧大小、帧速率、曝光、模拟增益(高达 8 倍)和数字增益(高达 4 倍) 自动曝光和增益控制环路,支持 50Hz/60Hz 闪烁避免 灵活的 1 位、4 位和 8 位视频数据接口,具有视频帧和行同步 具有可编程 ROI 和检测阈值的运动检测电路,具有数字输出作为中断 片上自振荡器 用于寄存器访问的 I2C 2 线串行接口 CSP 和裸片传感器封装选项 高 CRA,适用于小型模块设计
超低功耗图像传感器,专为始终开启的视觉设备和应用而设计 高灵敏度 3.6μ BrightSense(TM) 像素技术 324 x 324 有效像素分辨率,支持 QVGA 窗口、垂直翻转和水平镜像读取 30FPS 时 <1.1mW QQVGA 分辨率,30FPS 时 < 2mW QVGA 分辨率 可编程黑电平校准目标、帧大小、帧速率、曝光、模拟增益(高达 8 倍)和数字增益(高达 4 倍) 自动曝光和增益控制环路,支持 50Hz / 60Hz 闪烁避免 灵活的 1 位、4 位和 8 位视频数据接口,具有视频帧和行同步 具有可编程 ROI 和检测阈值的运动检测电路,具有可用作中断的数字输出 片上自振荡器 用于寄存器访问的 I2C 2 线串行接口 CSP 和裸片传感器封装选项 高 CRA,适用于小型模块设计
尽管过去几十年来信息技术、微电子、人工传感和信息处理领域取得了令人瞩目的进步,但实际系统在处理现实任务时仍然远不如生物系统有效。这种分析导致了神经形态工程领域的出现,特别是基于事件的传感,旨在构建基于硅的传感和计算设备,模仿生物系统获取和处理信息的方式。与传统图像传感器不同,EB 传感器不对所有像素使用通用采样率(称为帧速率),而是每个像素连续跟踪入射光量并在变化时异步采样信号。这种获取稀疏数据的高效方式、高时间分辨率以及对不受控制的照明条件的鲁棒性(具有高动态范围)是 EB 传感过程的特点,使 EB 成像对众多应用具有吸引力,例如工业自动化、过程监控、监控、物联网、AR/VR、汽车和移动环境。
以普朗克时间(tp)为终点。 复杂量子系统 R1:包括比基本粒子更大更复杂但仍然主要受量子力学原理支配的系统:o 尺度:从原子到分子尺度。o 实体:包括原子、分子和量子点、纳米粒子等小量子系统。o 框架内容:原子和分子级别的视觉表示。o 相互作用:以量子力学相互作用为主导,经典物理开始在更大的系统中发挥作用。o 信息处理:受系统的能量状态和复杂性的影响,导致帧速率比 R0 慢。 宏观现实 R2:包含经典宏观物体,其中量子效应通常可以忽略不计,特殊条件除外(例如超导、量子计算):o 尺度:从微观到天文,包括细胞、生物和天体。 o 实体:包括生物体、日常物体和大型结构等宏观实体。o 框架内容:宏观层面的视觉和其他感官表征。
X射线源在强度和时间域都继续前进,从而开放了分析物质结构和特性的新方法,前提是可以有效地记录所得的X射线图像。从这个角度来看,我们关注像素区域X射线检测器的特定局限性。尽管像素区域X射线检测器也在近年来进步,但许多实验仍然受到限制。特别是,需要以GHz速率获取连续图像的检测器;在同一图像中以数百kHz的帧速率在同一图像中可以准确测量单个光子和数百万光子的检测器;并有效地捕获了非常硬X射线的图像(20 keV至数百keV)。最新检测的数据量和数据速率超过了大多数实用的数据存储选项和读取带宽,因此需要在线处理数据或代替全帧全帧读数。
21MP区域扫描摄像机采用XOFLINK数据协议,高带宽高达100Gbps,并以完整的21MP分辨率支持高达540 fps的高帧速率。在需要快速接触图像处理的工业应用中,例如“飞行”检查,该相机为一个全新的可能性世界打开了门。2.5D Vision系统使用高速可编程条纹模式光源,可以在单个通行证中捕获大量的缺陷信息。它准确地检测到高度反射/透明的作品(例如金属,玻璃和薄膜等)表面上的小划痕,浅凹凸,异物,污垢和其他缺陷。紧凑型ID5000XM系列智能代码阅读器具有灵活的安装座和OLED显示屏,用于设备调试。内置传感器可确保用于批处理安装的完美定位,从而节省时间。加,从各种灯光选项中选择任何条形码类型。
在这项研究中,提出了一种动态交替的门调制(AGM)方案,以通过基于低成本的氧化物(A-GAO X)效果晶体管(FET)光电量基于模式切换来破坏RS困境。AGM方案注入交替的载体,以调节每个检测周期内A-GAO X FET SBPD的增强/耗竭模式。结果,正栅极偏置的积累模式增强了A-GAO X FET SBPD的响应性,而负栅极偏置下的耗尽模式消除了光电流并促进衰减速度。可以通过AGM方案在每个检测周期中同步实现增强的响应性和加速衰减速度,从而破坏了基于GA 2 O 3的光电探测器中典型的RS困境。此外,这种AGM策略可以很容易地扩展到其他波段的光dectors,这些波段与典型的RS困境相比。最重要的是,这种一般的AGM方案可以促进动态成像模拟的对比度和帧速率。
本文提出了一个客观的基础,用于使用计算机视觉技术分析赛马的步态模式,特别着眼于识别步态不对称性。使用最小输出误差(MOSSE)跟踪器和立体声摄像机系统的使用总和可以增强在动态环境中跟踪的准确性和鲁棒性。由瑞典农业科学大学(SLU)提供的数据集包括使用单眼和立体声摄像头捕获的视频。关键投资涉及图像特征在改善跟踪e ff的功能,立体声愿景比单眼设置的优势以及feacherture选择的影响,视频稳定和帧速率对跟踪性能的影响。发现表明,集成立体声摄像机数据和高级图像功能可显着提高跟踪鲁棒性,以可靠的客观路径前进,以检测小跑赛马的la行。测试的方法有可能通过早期诊断和干预来增强马福利,同时推进兽医和计算机视觉应用。
工艺。讨论了现代飞行员显示器的不同内容。考虑了航空电子设备可视化系统开发的特殊性。民航系统中使用的所有软件都是安全关键的,必须符合国际安全标准。这对所使用的硬件和软件开发过程都提出了额外的要求。飞行员显示可视化系统的核心是 OpenGL 安全关键 (SC) 库。本文介绍了我们阐述的软件和硬件 OpenGL SC 实现。我们通过针对航空应用的具体情况优化 OpenGL SC 代码、使用多核处理器以及最终通过利用 GPU 硬件加速的库来描述渲染加速的各个方面。本文报告了针对实际航空应用测量的实现的渲染速度。只有相对简单的应用程序才能在不使用 GPU 的情况下以可接受的帧速率渲染。还讨论了可视化系统认证的进一步发展和可能性。精心设计的可视化软件旨在与俄罗斯实时操作系统 JetOS 一起使用。
实现对大量量子粒子的快速、灵敏和并行测量是构建大规模量子平台以用于各种量子信息处理应用(例如传感、计算、模拟和通信)的一项基本任务。当前基于 CMOS 传感器和电荷耦合器件相机的实验原子和光学物理中的量子平台受到低灵敏度或慢操作速度的限制。这里将单光子雪崩二极管阵列与金刚石中的固态自旋缺陷集成在一起,以构建快速宽场量子传感器,实现高达 100 kHz 的帧速率。介绍了用于执行量子系统空间分辨成像的实验装置的设计。使用氮空位集合金刚石样品通过实验演示了一些示例性应用,包括感测直流和交流磁场、温度、应变、局部自旋密度和电荷动力学。开发的光子检测阵列广泛应用于其他平台,例如光镊中捕获的原子阵列、光学晶格、硅中的供体和固体中的稀土离子。