通过沿着液体固体界面施加热梯度而产生的热渗透流可以将其转化为将废热转化为电。虽然这种现象已近一个世纪以来一直闻名,但至关重要的是要更好地了解热渗透的分子起源。在此期间,我们首先详细介绍了热渗透的多种贡献。然后,我们展示了使用分子动力学计算热渗透系数的三种方法;一种基于界面焓过量和Derjaguin的理论框架的第一种方法,这是一种基于使用所谓的干性方法的界面熵过量的计算,以及一种新型的非平衡方法来计算在周期性通道中计算热剂量系数的方法。我们表明,这三种方法彼此对齐,尤其是对于光滑的表面。另外,对于极化的石墨烯 - 水界面,我们观察到较大的热渗透反应的变化,并且随着表面电荷的增加,流动方向的多次变化。总体而言,这项研究展示了渗透流的多功能性,并呼吁对带电表面附近热渗透行为进行实验研究。
作为一种进化保守的途径,河马信号不仅在胚胎发育中起关键作用,而且还调节癌症的起始和进展。调节河马途径的上游因子是复杂的,包括细胞 - 细胞接触,细胞 - 细胞基质触点,膜受体 - 配体结合和细胞骨架张力。对这些机械或可溶性提示的响应,河马核心激酶被激活或灭活,调节关键转录副因素YAP/TAZ的活性,从而产生生物学后果。在肿瘤的背景下,河马信号传导失调有助于癌症的标志,例如持续增殖,类似干性的特性和转移。重要的是,针对化学物质靶向河马信号正在成为一种有希望的抗癌策略。本文简要介绍了河马途径的发现过程,总结了调节河马途径的上游信号,讨论了河马灭活与癌症发展之间的关系,并突出了针对癌症治疗中靶向HIPPO信号的化学物质的潜在使用。
摘要:根据有关二元性关系的相关理论,量子波和粒子特性的可提取信息的总和分别以干扰可见性V和路径可区分性D为特征。然而,这种关系是由于量子束式(QBS)引起的量子的波状态和粒子状态之间的量子叠加而违反了这种关系。沿着另一条线,最近的研究将量子相干性C视为波性质的候选者。在这项研究中,我们提出了一个带有量子的干涉仪哪个路径检测器(QWPD),并根据c检查了广义二元关系。我们发现,这种关系仍然存在于这种情况下,但是当QWPD系统部分存在时,这两种属性之间的干扰会导致全粒子特性。使用一对偏振化的光子,我们在两路径情况下实验验证我们的分析。本研究将相干性和路径信息之间的二元性关系扩展到量子案例,并揭示了量子叠加对二元性关系的影响。
摘要:特应性皮炎(AD)是一种常见的核和慢性炎症性皮肤病,对患者的生活质量产生了重大影响。它的特征是干性,发痒和湿疹样皮疹。在幼儿中更为普遍,并且与其他各种过敏疾病有关。传统药物治疗对治疗AD的幼儿有一定的局限性。但是,生物制剂在年轻患者的医疗治疗中具有良好的临床应用前景。dupilumab是一种完全人类的单克隆抗体,特异性结合了IL-4Rα亚基,抑制IL-4和IL-13信号传导,并阻止2型炎症反应的发生。它对治疗中度至重度AD的婴儿和儿童具有良好的影响。本综述探讨了杜皮鲁马布在婴儿和儿童中AD治疗的安全性和功效,以及早期干预对AD进展的影响,目的是为使用Dupilumab用于治疗AD的年轻患者的临床实践。关键词:特应性皮炎,杜皮鲁马布,婴儿,儿童,治疗
视网膜疾病会严重危害人们的视力,直接影响生活质量。视网膜是人眼的重要组成部分,由视觉细胞组成。它负责处理视觉信息。黄斑是中央视觉所必需的,位于视网膜层内。视网膜损伤,特别是黄斑区域的损伤,会导致视力严重丧失 [ 1 ]。因此,及早发现视网膜异常对于及时治疗和减少视力丧失至关重要 [ 2 ]。最常见的视网膜疾病包括糖尿病性黄斑水肿 (DME) 和年龄相关性黄斑变性 (AMD)。AMD 有两种类型:湿性 AMD(脉络膜新生血管,或 CNV)和干性 AMD(视网膜黄斑硬化症),后者是 65 岁以上人群失明的主要原因 [ 3 ]。约 25% 的糖尿病患者患有糖尿病性黄斑水肿 (DME),这是由于糖尿病导致视网膜积液所致。如果不及时治疗,这些疾病可能会永久损害视力。因此,开发自动诊断系统对于有效的治疗计划至关重要,因为此类系统可以减轻临床医生的负担并提高早期检测率 [ 4 ]。
摘要:具有高相干性的热排放,尽管不如激光的热排放,但在许多实际应用中仍然起着至关重要的作用。在这项工作中,通过利用几何扰动诱导的光学晶格三倍和相关的光辉区折叠效果,我们提出并研究中红外的热排放,并同时具有高时空和空间连贯性。与我们先前工作中的倍增扰动的情况相反,引导模式分散带的陡峭部分将折叠到三元格式中的高对称性γ点。在这种情况下,特定的发射波长仅对应于非常小的波形范围。因此,除了以30 nm左右的实验带宽为特征的高时间相干性外,所达到的热排放还具有超高的空间相干性。计算表明,在中红外的热发射波长下,空间相干长度很容易达到MM尺度。关键字:三元光栅,光彩区折,准引导模式,中红外,连贯的热发射器
在再生医学的历史上,1992年,实验室获得的膀胱首次被用于脊髓脊膜膨出的患者。人工膀胱显示出良好的效果和可接受的结果。6 10年后,从实验室获得的肝脏组织作为第一个引入的实体器官,新组织的体外研究显示出合理和适当的结果,并在研究大鼠中表现出良好的效果。7 如今,再生医学已取得了显着的进步,并获得了再生身体不同器官和组织的卓越能力,因此,世界各地的许多研究人员正在努力准备和推进该领域的成果并使其适用于临床。例如在2015年用于治疗视网膜疾病,人类胚胎干细胞(HESCs)被用于改善9名干性年龄相关性黄斑变性(AMD)患者和9名Stargardt黄斑营养不良患者的病情。结果很好,18名患者中有10名视力明显改善。经过对接受 HESC 治疗的患者 22 个月的随访,有证据表明 HESC 是安全的,并且耐受性良好,此外,没有证据表明存在排斥、不良反应
它使用Jurkat T细胞(两者IC 50 = 0.05 µM)抑制记者测定中的NF-κB-和AP-1介导的转录,并且在Jurkat T细胞中抑制了IL-2和IL-8水平(两者IC 50 = 0.03 µm)。SP100030(每天20 mg/kg持续三天)可将嗜酸性粒细胞和T细胞浸润成支气管肺泡灌洗液(BALF),并降低卵巢蛋白 - 敏感性大鼠ASTHMA模型中分离的肺组织中AP-1和磷酸化的AP-1水平。2,它以每天每天1 mg/kg的剂量给药时,可防止骨骼肌,棕色脂肪组织,脾脏,肾脏和心脏肿块减少。3 SP100030(每天10 mg/kg)抑制博来霉素诱导的体重降低,湿干性肺重量比增加,并增加肺蛋白质蛋白质,脊髓过氧化物酶(MPO),弹性酶,胶原蛋白酶,胶原蛋白和IL-1β水平的肺纤维纤维纤维纤维纤维纤维化小鼠模型中的IL-1β水平。4
抽象骨再生是由骨骼干/祖细胞(SSPC)介导的,这些细胞主要是从骨损伤后从骨膜中募集的。骨膜的组成以及SSPC激活和分化的步骤仍然很少理解。在这里,我们在骨修复的早期阶段(https://fracture-repair-atlas.cells.ucsc.edu)生成了骨膜和骨折部位的骨膜的单核图谱。我们鉴定出表达干性标记物(PI16和LY6A /SCA1)的骨膜SSPC,并通过采用损伤诱导的纤维生成细胞(IIFC)命运来应对骨折,然后在经历骨生成或软骨发生之前。我们分别鉴定了与IIFC相关的不同基因核,以及它们的参与术分别涉及Notch,Wnt和昼夜节律时钟信号传导。最后,我们表明IIFC是骨折环境中旁分泌信号的主要来源,这表明该瞬时IIFC种群在骨折愈合过程中起着至关重要的旁分泌作用。总体而言,我们的研究提供了骨折愈合的早期阶段的完整时间地形,以及骨膜SSPC对损伤的动态反应,从而重新定义了我们对骨骼再生的了解。
炎症性疾病由多种以炎症为特征的疾病和病症组成,例如炎症性肠病、肝炎和类风湿性关节炎(Okin et al., 2012)。在炎症性疾病的病理条件下,免疫系统错误地攻击健康细胞或组织,导致慢性疼痛、发红、肿胀、僵硬和身体损伤(Marchetti et al., 2005)。炎症性疾病与多种潜在原因有关,包括饮食、压力和睡眠障碍。抗炎药物有助于预防或减少疾病进展。然而,常用药物经常伴有严重的不良反应。迫切需要开发新的炎症性疾病治疗方法并阐明关键基因和内在机制。诊断生物标志物在患者的诊断和治疗过程中的多个方面对疾病的治疗有用。炎症生物标志物多种多样,包括细胞因子/趋化因子、急性期蛋白、免疫相关效应物、活性氧和氮物质、前列腺素和环氧合酶相关因子、转录因子和生长因子 ( Brenner et al., 2014 )。Lin et al. 证明肠粘膜中的 lncRNA DLEU2 在肠道炎症时失调,可以作为溃疡性结肠炎的诊断生物标志物 ( Lin et al. )。他们将 DLEU2 鉴定为一种抗炎 lncRNA,通过负向调节 NF- κ B 信号通路来抑制肠道炎症 ( Lin et al. )。Huang et al.报道称,MHR(单核细胞与高密度脂蛋白的比率)和MAR(单核细胞与载脂蛋白A1的比率)是理想的促炎症标志物,可影响绝经后2型糖尿病女性骨微环境中由慢性炎症引起的骨稳态失衡(Huang et al.)。这些研究人员将生物标志物的研究课题扩展到炎症疾病。找到正确的治疗靶点是抗炎药物研发中最重要的方法。许多靶点负责抗炎作用,例如抑制细胞因子信号传导、降低白细胞活化、趋化性和募集。研究人员已经在这个研究课题中确定了几个靶点。K-Ras是一个研究得比较深入的致癌基因。Qi et al.报道称,抑制 K-Ras G13D 突变可通过 RAS/ERK 通路促进癌症干性和炎症 ( Qi et al. )。这一发现可能对理解 K-Ras G13D 突变对促进癌症干性和炎症的影响,在使用 K-Ras G13D 靶向疗法时具有重要意义