超导电子设备的发展需要仔细表征化妆电子电路的组件。超导弱环节是大多数超导电子组件的构建块,其特征是高度非线性的电流到相位关系(CPRS),通常不完全知道。最近的研究发现,约瑟夫森二极管效应(JDE)可能与嵌入超导干涉仪中的弱环节的弱环节的高谐波含量有关。这使JDE成为探索单谐波CPR以外的弱环节的谐波内容的天然工具。在这项研究中,我们介绍了双环超导量子干扰装置(DL-squid)的理论模型和实验特征,该设备嵌入了全金属超导型金属 - 金属 - 超导 - 超导体连接。由于三个弱连接的超电流的干扰,该设备在并联的三个弱环上的干扰而表现出JDE,并且可以通过两个磁通量调节该功能,这些磁通量充当实验旋钮。我们根据干涉仪臂的相对重量以及有关通量可调性和温度的实验表征进行了对设备的理论研究。
FLEX - FLORIS 仪器控制单元 INSIGHT – 地震仪电子盒 SENTINEL 1 / SES – 仪器控制模块 AEOLUS – Aladin 控制和数据管理单元 GOCE - 梯度仪全套电子设备 (3xFEEU、GAIEU 和 TCEU) IASI Ng – 机械驱动电子设备 MTG / IRS – 干涉仪控制电子设备 BEPI-COLOMBO / BELA – 模拟电子单元
每个 SiN PIC 都包含一组嵌入波导中的 TOPM,以便调整和平衡 AMZI 结构。这些加热器控制干涉仪臂的相对相位,以及结点处马赫-曾德尔干涉仪 (MZI) 结构的分光比。这些加热器由源测量单元 (SMU) 阵列控制,这些单元将每个加热器设置为恒定电压。对于每个 AMZI 结构,第一个 MZI 的分光比设置为在第二个 MZI 处产生相等的会聚脉冲。这要求沿 AMZI 的长臂发送更高的强度,而长臂处的光学损耗略高。第二个 MZI 的分光比设置为 50:50。可以通过使用快速光电二极管或 SNSPD 测量来自脉冲光输入信号的 AMZI 的两个输出来确认这些条件。然后调整 Bob AMZI 短臂上的相位加热器,直到相位偏移与 Alice AMZI 产生的相位偏移对齐。一旦为每个 AMZI PIC 找到最佳工作电压,它们就不需要在工作期间进行调整。我们预计芯片的温度稳定性极大地促进了加热器设定点的稳定性。
摘要。多模光学干涉仪代表了成功实施几种利用光学处理的量子信息方案的最可行的平台。示例范围从量子通信和传感到计算,包括光学神经网络,光储层计算或复杂物理系统的模拟。实现此类例程需要高水平的控制和可调性,以定义设备执行的操作的参数。鉴于综合光子技术的最新技术改进,这一要求变得尤为重要,这使得能够逐渐嵌入相当大的可调参数的更大的电路实施。我们制定了有效的程序,以表征光电在物理实验中通常发生的缺陷,例如输入和输出收集阶段中的不平衡损耗和相位不稳定性。该算法旨在重建代表光学干涉仪的转移矩阵,而无需对其内部结构和编码做出任何强烈的假设。我们在实验相关的方案中显示了这种方法的生存能力,该方案由可调的集成光子电路定义,我们证明了我们方法的有效性和鲁棒性。我们的发现可以基于批量和集成配置在各种光学设置中找到应用程序。
纳米定位和纳米轴承机用于在25 mm x 25 mm x 5 mm的范围内进行三维坐标测量,分辨率为0.1 nm。其独特的sens sentement在所有三个坐标轴上都提供了无误差测量。用于长度测量值的三个微型平面镜面干涉仪的测量轴实际上与探针传感器的接触点与单个点的测量对象相交。
美国专利 US20230176261A1 单轴光学多测量成像系统 10/26/22 美国专利 US20230179843A1 孔径光阑利用相机 09/28/22 美国专利 US20230175952A1 单轴光学多测量传感器 12/02/21 美国专利 11761750 多环境瑞利干涉仪 09/19/23 美国专利 16369218 由垂直昼夜米氏谐振器支持的光学设备 05/05/21
概述:本课程旨在介绍量子测量领域。主要目标是了解量子力学测量的基础知识,特别是如何在广泛的物理架构中实现正式的理论描述。将强调量子特性在单体(非交换可观测量)和多体(纠缠)设置中的作用。涵盖的示例将包括量子计算(量子位)、计量学(原子钟、干涉仪)以及基础物理学(引力波探测)中感兴趣的系统。
2014-2018 使用两台 Pol-GPRI 监测雪崩以进行危害评估;职位:PI(ETH),联合 PI(开放大学);资助者:瑞士国家科学基金会,SNF(瑞士);职责:获得一笔资助,用于资助博士生的工资和实地考察费用。仍参与 OU 的联合监督。关于项目:本研究重点是使用两台便携式极化雷达干涉仪 (Pol-GPRI) 监测雪崩,特别关注开发新的风险评估方法和最终预防方法。
这个问题的问题探讨了LHC在高能量边界(P40)的前10年物理学的巨大影响,并在此期间听到了那些处于机器敏锐的末端的人和实验(P33)的声音。LHC的故事还有很长的路要走,它与Ligo有相似之处,并寻求检测引力波。在1987年,当CERN理事会成立的计划小组建议使用高幼体质子 - 普罗顿对撞机,质量为13-15 TEV时,Ligo刚刚成立为Caltech/MIT项目。LIGO的现场建设始于1994年,即LHC批准的那一年,二十年后,这两个基础设施使历史悠久,直接发现了Higgs Boson和重力波。现在,随着高光度LHC的升级和增强的高级LIGO“ Plus”,物理学家正在争夺建立Higgs工厂和第三代重力波干涉仪,以全面利用这些层状发现。对前者的计划一直是欧洲战略更新的讨论中心,即将得出结论,而正如我们在P53上报告的,欧洲的两个地点正在竞标主持爱因斯坦望远镜(ET)。干涉仪可能比对船员便宜,但是,正如前LIGO总监Barry Barish在我们对P61的采访中所解释的那样,像ET这样的项目需要专业管理,艰难的决策和健康的风险需求。
摘要;阿伏伽德罗常数与质量单位和各种基本物理和电常数有关,是精确测量分子质量的必要条件。由于半导体技术的最新成功,硅元素因其晶体中近乎完美的原子结构而成为精确测量的通用参考材料的可能候选者。使用硅晶体确定阿伏伽德罗常数的项目是世界标准组织研究的主题,具有历史意义。国家医学研究实验室的团队刚刚开始使用 1 千克完美硅球的长期项目的最后阶段。它使用光学干涉仪测量球体的直径,并使用国家千克标准测量其质量,从而得到球体的宏观密度。它还测量了由相同硅锭制成的 X 射线干涉仪的晶格间距。后者将与与比利时 CBNM. Geel 合作确定的平均原子质量相结合,得出微观密度。这两个密度之间的等效性提供了阿伏伽德罗常数。目前声称的测量精度为体积 O.3ppm、质量 O.05ppm、晶格间距 Ippm。该项目对相应测量的目标精度将提供总不确定度小于 0.3ppm 的阿伏伽德罗常数。 lut 修订于