摘要 - 将协作机器人集成到工业环境中的整合提高了生产率,但也强调了与操作员安全和人体工程学相关的重大挑战。本文提出了一个创新的框架,该框架集成了先进的视觉感知技术,实时人体工程学监测和行为树(BT)基于自适应的决策。与通常在孤立或静态上运行的传统方法不同,我们的方法结合了深度学习模型(Yolo11和缓慢地),先进的跟踪(无流感的卡尔曼滤波器)和动态的人体工程学评估(OWAS),提供了模块化,可扩展和适应性系统。实验结果表明,该框架在几个方面都优于先前的方法:检测姿势和动作的准确性,在管理人类机器人相互作用方面的适应性以及通过及时的机器人干预措施降低人体工程学风险的能力。尤其是,视觉感知模块比Yolov9和Yolov8具有优越性,而实时人体工程学的概念消除了静态分析的局限性。自适应角色管理是由行为树实现的,比基于规则的系统具有更大的响应能力,使该框架适合复杂的工业场景。我们的系统在掌握意图识别方面的准确性为92.5%,并成功地将人体工程学风险分类为实时响应能力(平均延迟为0.57秒),使及时的机器人指数术语 - 人类机器人合作,实时的eR-GONOMICS,实时的eR-GONOMICS,适应性的决策,视觉感知,视觉感知,是Haviour haviour tree Yolo,Yolo。
摘要 — 最近的物联网 (IoT) 网络涵盖大量固定和机器人设备,即无人地面车辆、水面舰艇和空中无人机,以执行搜索和救援行动、野火监测、洪水/飓风影响评估等关键任务服务。由于基于物理的机器人操作系统 (ROS) 模拟器是基于时间的,而基于网络的无线模拟器是基于事件的,因此实现这些设备之间的通信同步、可靠性和最小通信抖动是模拟和系统级实现的关键挑战,此外还有部署在现实环境中的移动和异构 IoT 设备的复杂动态。然而,在将异构多机器人系统付诸实践之前,物理(机器人)和网络模拟器之间的同步是最难解决的问题之一。现有的基于 TCP/IP 通信协议的同步中间件主要依赖于机器人操作系统 1 (ROS1),由于其基于主控的架构,会消耗大量通信带宽和时间。为了解决这些问题,我们设计了一种新型的机器人与传统无线网络模拟器之间的同步中间件,该中间件依赖于新发布的具有无主数据包发现机制的实时 ROS2 架构。我们提出了一种地面和空中代理的速度感知传输控制协议 (TCP) 算法,使用数据分发服务 (DDS) 的发布-订阅传输,以最大限度地减少不同机器人代理之间的数据包丢失和同步、传输和通信抖动。我们提出的中间件与特定的机器人和网络模拟器无关,但对于模拟和实验,我们使用 Gazebo 作为基于物理的 ROS 模拟器,并使用 NS-3 作为无线网络模拟器。我们在模拟和系统层面对数据包丢失概率和平均延迟进行了广泛的网络性能评估,使用视距 (LOS)/非视距 (NLOS) 和 TCP/UDP 通信协议,通过我们提出的基于 ROS2 的同步中间件。此外,为了进行比较研究,我们进行了一项详细的消融研究,用实时无线网络模拟器 EMANE 替换 NS-3,用基于主控的 ROS1 替换无主控的 ROS2。最后,为了在实践中实现转变,我们在不同的地形上部署了一组不同的真实机器人——一架空中无人机 (Duckiedrone) 和两辆地面车辆 (TurtleBot3 Burger),形成了无主控 (ROS2) 和主控 (ROS1) 集群,以评估潜在的网络同步和抖动问题。我们提出的中间件证明了使用一组不同的固定和机器人设备构建大规模物联网基础设施的前景
摘要 — 最近的物联网 (IoT) 网络跨越众多固定和机器人设备,即无人地面车辆、水面舰艇和空中无人机,以执行关键任务服务,例如搜索和救援行动、野火监测、洪水/飓风影响评估。实现这些设备之间的通信同步、可靠性和最小通信抖动是模拟和系统级实现的关键挑战,因为基于物理的机器人操作系统 (ROS) 模拟器是基于时间的,而基于网络的无线模拟器是基于事件的,此外还有部署在现实环境中的移动和异构 IoT 设备的复杂动态。尽管如此,在将异构多机器人系统转化为实践之前,物理(机器人)和网络模拟器之间的同步是最难解决的问题之一。现有的基于 TCP/IP 通信协议的同步中间件主要依赖于机器人操作系统 1 (ROS1),由于其基于主控的架构,它消耗了大量的通信带宽和时间。为了解决这些问题,我们设计了一种新型的机器人和传统无线网络模拟器之间的同步中间件,它依赖于新发布的实时 ROS2 架构和无主数据包发现机制。我们提出了一种地面和空中代理的速度感知传输控制协议 (TCP) 算法,使用数据分发服务 (DDS) 的发布-订阅传输,以最大限度地减少不同机器人代理之间的数据包丢失和同步、传输和通信抖动。我们提出的中间件与特定的机器人和网络模拟器无关,但对于模拟和实验,我们使用 Gazebo 作为基于物理的 ROS 模拟器,使用 NS-3 作为无线网络模拟器。我们对基于 ROS2 的同步中间件,在数据包丢失概率和平均延迟方面进行了广泛的网络性能评估,包括视距 (LOS)/非视距 (NLOS) 和 TCP/UDP 通信协议。此外,为了进行比较研究,我们进行了一项详细的消融研究,用实时无线网络模拟器 EMANE 替换 NS-3,用基于主控的 ROS1 替换无主控 ROS2。我们提出的中间件证明了使用多种固定和机器人设备构建大规模物联网基础设施的前景最后,为了在实践中实现转变,我们在不同的地形上部署了一组不同的真实机器人——一架空中无人机(Duckiedrone)和两辆地面车辆(TurtleBot3 Burger),形成了无主(ROS2)和有主(ROS1)集群,以评估潜在的网络同步和抖动问题。
空间已成为私营部门和公共部门越来越活跃的运营领域。至关重要的是,国防部(DND)具有准确的手段,以保持对部署的太空资产以及周围威胁的能见度和控制。太空域意识(SDA)是一个概念,它是指对部署的太空资产和其他对象的监视和跟踪,以确保运营安全性。当前的SDA方法包括使用地面和太空光学望远镜,以及在上部频段中运行的雷达。两个线元素集(TLE)是轨道数据最易于访问的手段,并提供轨道位置预测,其精度的精度高达1 km,速度为1 m/s。较小的航天器的日益普及,例如立方体和微型卫星作为进行太空操作的经济手段,这增加了对更准确的SDA的需求。本文测试了使用高频(HF)雷达使用视线(LOS)传播和目标检测来实现准确范围和径向速度估计的可行性。国际空间站(ISS)被选为目标,这是由于其尺寸较大和轨道较低的高度。使用20 MHz的工作频率用于刺穿电离层并照亮所选目标。范围多普勒图,并应用校正以补偿大气和滤波器误差。通过夜间传输期和日期传播期比较了电离层在不同水平的太阳能活动中的效果。使用澳大利亚开源软件的总电子含量(TEC)估计计算范围误差,该估计是澳大利亚开源软件提供的高频射线疗法实验室(PHARLAP)。发现,夜间传输不需要高估的TEC,并且不需要校正,而白天的传输测量结果受到较大TEC的极大影响。白天传输产生的估计的电离层范围延迟高达90 km,多普勒校正高达45 Hz。夜间传输的平均延迟为30公里,多普勒校正最大15 Hz。校正后的最终范围测量值在100秒的可见度中,在夜间传输期间,在100秒的可见度中,均方根误差(RMSE)为61 km。具有如此高范围残差,发现HF不适合精确的范围测量值,除非开发出更好的电离层校正方法并应用了更密集的信号处理技术。然而,夜间和白天传播的多普勒测量值均产生的剩余RMSE小于10 Hz。夜间传输范围率残差仅为85 m/s,在TLE精度的误差范围内。这表明HF可用于使用多普勒测量值进行精确测定。