Loading...
机构名称:
¥ 1.0

摘要 — 最近的物联网 (IoT) 网络跨越众多固定和机器人设备,即无人地面车辆、水面舰艇和空中无人机,以执行关键任务服务,例如搜索和救援行动、野火监测、洪水/飓风影响评估。实现这些设备之间的通信同步、可靠性和最小通信抖动是模拟和系统级实现的关键挑战,因为基于物理的机器人操作系统 (ROS) 模拟器是基于时间的,而基于网络的无线模拟器是基于事件的,此外还有部署在现实环境中的移动和异构 IoT 设备的复杂动态。尽管如此,在将异构多机器人系统转化为实践之前,物理(机器人)和网络模拟器之间的同步是最难解决的问题之一。现有的基于 TCP/IP 通信协议的同步中间件主要依赖于机器人操作系统 1 (ROS1),由于其基于主控的架构,它消耗了大量的通信带宽和时间。为了解决这些问题,我们设计了一种新型的机器人和传统无线网络模拟器之间的同步中间件,它依赖于新发布的实时 ROS2 架构和无主数据包发现机制。我们提出了一种地面和空中代理的速度感知传输控制协议 (TCP) 算法,使用数据分发服务 (DDS) 的发布-订阅传输,以最大限度地减少不同机器人代理之间的数据包丢失和同步、传输和通信抖动。我们提出的中间件与特定的机器人和网络模拟器无关,但对于模拟和实验,我们使用 Gazebo 作为基于物理的 ROS 模拟器,使用 NS-3 作为无线网络模拟器。我们对基于 ROS2 的同步中间件,在数据包丢失概率和平均延迟方面进行了广泛的网络性能评估,包括视距 (LOS)/非视距 (NLOS) 和 TCP/UDP 通信协议。此外,为了进行比较研究,我们进行了一项详细的消融研究,用实时无线网络模拟器 EMANE 替换 NS-3,用基于主控的 ROS1 替换无主控 ROS2。我们提出的中间件证明了使用多种固定和机器人设备构建大规模物联网基础设施的前景最后,为了在实践中实现转变,我们在不同的地形上部署了一组不同的真实机器人——一架空中无人机(Duckiedrone)和两辆地面车辆(TurtleBot3 Burger),形成了无主(ROS2)和有主(ROS1)集群,以评估潜在的网络同步和抖动问题。

用于协作的可靠且低延迟同步中间件...

用于协作的可靠且低延迟同步中间件...PDF文件第1页

用于协作的可靠且低延迟同步中间件...PDF文件第2页

用于协作的可靠且低延迟同步中间件...PDF文件第3页

用于协作的可靠且低延迟同步中间件...PDF文件第4页

用于协作的可靠且低延迟同步中间件...PDF文件第5页

相关文件推荐