硅锗异质结构中的栅极定义量子点已成为量子计算和模拟的有力平台。迄今为止,发展仅限于在单个平面中定义的量子点。在这里,我们提出通过利用具有多个量子阱的异质结构来超越平面系统。我们展示了应变锗双量子阱中栅极定义双量子点的操作,其中两个量子点都与两个储层进行隧道耦合,并发生平行传输。我们分析了与附近栅极的电容耦合,发现两个量子点都聚集在中央柱塞栅极下方。我们提取了它们的位置和大小,由此得出结论,双量子点垂直堆叠在两个量子阱中。我们讨论了多层器件的挑战和机遇,并概述了量子计算和量子模拟中的一些潜在应用。
事实证明,最大化能带简并度和最小化声子弛豫时间对于推进热电学是成功的。与单碲化物合金化已被公认为是收敛 PbTe 价带以改善电子性能的有效方法,同时材料的晶格热导率仍有进一步降低的空间。最近有研究表明,声子色散的加宽衡量了声子散射的强度,而晶格位错是通过晶格应变波动实现这种加宽的特别有效的来源。在本研究中,通过精细控制 MnTe 和 EuTe 合金化,由于涉及多个传输带,PbTe 价带边缘附近的电子态密度显著增加,而密集的晶内位错的产生导致声子色散有效加宽,从而缩短声子寿命,这是由于位错的应变波动较大,这已由同步加速器 X 射线衍射证实。电子和热改进的协同作用成功地使平均热电性能系数高于工作温度下 p 型 PbTe 的报道值。
摘要:空间退化是在许多材料中发现的复杂电子,几何结构和磁性结构的原因,这些材料更具代表性的示例是KCUF 3。在文献中,该晶格的特性通常通过基于superexchange相互作用的Kugel -khomskii模型来解释。在这里,我们提供了严格的理论和计算参数,以证明结构和磁性本质上是由电子 - 振动(振动)相互作用引起的。此外,根据ÖPIK和PRYCE的工作,我们表明,晶格(均质应变)和基序(声子)扭曲之间的耦合对于了解晶格的主要稳定构型至关重要。使用此信息,我们预测了KCUF 3中的一个新的低能阶段,该阶段可以强烈改变其特性,并为如何通过应变工程稳定它提供指导。
图 6-5: 氙弧和太阳光光谱 [102] 111 图 A-I: TINUVIN 320 结构 129 图 A-2: 吸收光谱 131 图 A-3: 结构 146 图 A-4: 吸光度 146 图 A-5: 搭接剪切 154 图 A-6: 曝光周期 155 图 B-1: 应力与应变 (MET 16) 182 图 B-2: 应力与应变 (K 404) 182 图 B-3: 应力与应变 (I TIN 53) 182 图 B-4: 应力与应变 (MET 23) 183 图 B-5: 应力与应变 (NUV 1) 183 图 B-6: 应力与应变 (K 100) 183 图 B-7: 应力与应变(NUV 17) 184 图 B-8: 应力与应变 (MET 31) 184 图 B-9: 应力与应变 (NUV 26) 185 图 B-I0: 应力与应变 (MET 4) 185 图 B-ll: 应力与应变 (I TIN 48) 185 图 B-12: 应力与应变 (I TIN 8) 186 图 B-13: 应力与应变 (I TIN 4) 186 图 B-14: 应力与应变 (I TIN 61) 186 图 B-15: 应力与应变 (MET 2) 187 图 B-16: 应力与应变 (I TIN 5) 187 图 B-17: 应力与应变 (MET 17) 187 图 B-18: 应力与应变 (MET 33) 188 图B-19: 应力与应变 (MET 8) 188 图 B-20: 应力与应变 (I TIN 48) 188 图 B-21: 应力与应变 (MET 6) 189 图 B-22: 应力与应变 (NUV 8) 189 图 B-23: 应力与应变 (NUV 4) 189 图 B-24: 应力与应变 (NUV 28) 190 图 B-25: 应力与应变 (NUV 32) 190 图 C-l: (波长与折射率) MET 6 与 MET 192 图 C-2: (波长与折射率) MET 2 与 MET 17 192 图 C-3: (波长与折射率) MET 8 与 MET 17 193 图 C-4: (波长与折射率) NUV 8 vs. NUV 16 193 图 C-5:(波长 vs. 折射率)NUV 16 vs. NUV 3 194 图 C-6:(波长 vs. 折射率)NUV 4 vs. NUV 16 194 图 C-7:(波长 vs. 折射率)I TIN 5 vs.I TIN 48 194 图 C-8:(波长 vs. 折射率)I TIN 4 vs.I TIN 48 195 图 C-9:(波长 vs. 折射率)I TIN 8 vs.I TIN 48 195 图 F-1:DCS 扫描显示 Tg (NUV 8) 212 图 F-2:DCS 扫描显示 Tg (I TIN 5) 212 图 F-3:DCS 扫描显示 Tg (MET 6) 213 图 F-4:DCS 扫描未显示 Tg(I TIN 5) 213 图 F-5:DCS 扫描未显示 Tg(MET 6) 214 图 G-l:1 NUV 9 216 图 G-2:2 NUV 9 216 图 G-3:1 I TIN 58 217 图 G-4:1 MET 30 217 图 G-5:2 I TIN 58 218 图 G-6:2 MET 30 218
摘要。本文介绍了工业牵引单元PE2U和PE2M框架的应力应变状态的理论分析结果。使用SolidWorks仿真软件中的有限元方法进行了应力 - 应变分析。分析结果对于估计服务寿命结束时牵引单元的剩余资源并延长其使用寿命是必要的。根据州标准的要求,为了延长滚动库存负载构造的使用寿命,应研究这些结构的应力 - 应变状态。使用SOLIDWORKS软件构建了3D框架的3D模型来评估应变状态。使用SolidWorks模拟程序,使用基于Palmgren-Miner-Mises理论的有限元方法评估了转向架框架的应力 - 应变状态。考虑了影响转向架框架的所有静态和动态载荷。
摘要:智能防护服的开发将有助于检测接触体育,交通碰撞和其他事故的伤害。ECOFLEX,间隔织物和基于石墨烯的气凝胶的组合提供了多功能复合材料。在应变范围为40〜55%的应变敏感性,压力灵敏度为0.125 kpa -1在0〜15 kPa的压力敏感性,温度灵敏度为-0.648°C -1。进行50次撞击测试后,其保护系数仅从60%下降到55%。此外,它显示了热绝缘性能。有限元数值模拟分析的压缩和影响过程结果与实验结果非常吻合。ECOFLEX/AIRGEL/SPACER织物传感器表现出简单的结构,较大的压力应变,高灵敏度,柔韧性和易于制造,使其成为抗击负荷的智能保护服装的候选者。
摘要:已经开发了一种高分辨率传输电子显微镜(HR-TEM)和高分辨率扫描传输电子显微镜(HR-STEM)图像的互惠空间处理方法。命名为“绝对应变”(Abstrain),它可以通过用户定义的Bravais晶格对平面间距离和角度,移位场以及应变张量组件进行定量和映射,并从特定于HR-TEM和HR-STEM成像的图像扭曲中进行校正。我们提供相应的数学形式主义。抽象超出了对现有方法的限制,即通过对感兴趣区域进行直接分析,而无需在同一视野上具有相似晶体结构的参考晶格边缘。此外,对于由两种或多种原子组成的晶体,每个原子都有其自身的子结构约束,我们开发了一种名为“相对位移”的方法,用于提取与一种原子类型的亚晶状体和测量原子色谱柱相关的子晶状体,并与与Bravais lattice lattice lattice lattice或另一个子结构相关的原子柱相关。证明了抽象和相对位移在功能性氧化物铁电异质结构的HR-STEM图像中的成功应用。
图 6-5: 氙弧和太阳光光谱 [102] 111 图 AI: TINUVIN 320 结构 129 图 A-2: 吸收光谱 131 图 A-3: 结构 146 图 A-4: 吸光度 146 图 A-5: 搭接剪切 154 图 A-6: 暴露周期 155 图 B-1: 应力与应变 (MET 16) 182 图 B-2: 应力与应变 (K 404) 182 图 B-3: 应力与应变 (I TIN 53) 182 图 B-4: 应力与应变 (MET 23) 183 图 B-5: 应力与应变 (NUV 1) 183 图 B-6: 应力与应变 (K 100) 183 图 B-7: 应力与应变 (NUV 17) 184 图 B-8: 应力与应变 (MET 31) 184 图 B-9: 应力与应变 (NUV 26) 185 图 B-I0: 应力与应变 (MET 4) 185 图 B-ll: 应力与应变 (I TIN 48) 185 图 B-12: 应力与应变 (I TIN 8) 186 图 B-13: 应力与应变 (I TIN 4) 186 图 B-14: 应力与应变 (I TIN 61) 186 图 B-15: 应力与应变 (MET 2) 187 图 B-16: 应力与应变 (I TIN 5) 187 图 B-17: 应力与应变 (MET 17) 187 图 B-18: 应力与应变 (MET 33) 188 图 B-19: 应力与应变 (MET 8) 188 图 B-20: 应力与应变 (I TIN 48) 188 图 B-21: 应力与应变 (MET 6) 189 图 B-22: 应力与应变 (NUV 8) 189 图 B-23: 应力与应变 (NUV 4) 189 图 B-24: 应力与应变 (NUV 28) 190 图 B-25: 应力与应变 (NUV 32) 190 图 C1: (波长与折射率) MET 6 与 MET 192 图 C-2: (波长与折射率) MET 2 与 MET 17 192 图 C-3: (波长与折射率) MET 8 与 MET 17 193 图 C-4: (波长与折射率) NUV 8 与 NUV 16 193 图 C-5:(波长 vs. 折射率) NUV 16 vs. NUV 3 194 图 C-6:(波长 vs. 折射率) NUV 4 vs. NUV 16 194 图 C-7:(波长 vs. 折射率) I TIN 5 vs. I TIN 48 194 图 C-8:(波长 vs. 折射率) I TIN 4 vs. I TIN 48 195 图 C-9:(波长 vs. 折射率) I TIN 8 vs. I TIN 48 195 图 F-1:DCS 扫描显示 Tg (NUV 8) 212 图 F-2:DCS 扫描显示 Tg (I TIN 5) 212 图 F-3:DCS 扫描显示 Tg (MET 6) 213 图 F-4:DCS 扫描未显示 Tg (I TIN 5) 213 图 F-5: DCS 扫描未显示 Tg (MET 6) 214 图 G1:1 NUV 9 216 图 G-2:2 NUV 9 216 图 G-3:1 I TIN 58 217 图 G-4:1 MET 30 217 图 G-5:2 I TIN 58 218 图 G-6:2 MET 30 218
摘要 — 本文详细研究了机械应变对过渡金属二硫属化物 (TMD) 材料隧道场效应晶体管 (TFET) 的影响。首先,利用密度泛函理论 (DFT) 的第一原理在元广义梯度近似 (MGGA) 下计算机械应变对 MoSe 2 材料参数的影响。通过在非平衡格林函数 (NEGF) 框架中求解自洽 3D 泊松和薛定谔方程,研究了 TMD TFET 的器件性能。结果表明,I ON 和 I OFF 均随单轴拉伸应变而增加,但 I ON / I OFF 比的变化仍然很小。TMD TFET 中这种应变相关性能变化已被用于设计超灵敏应变传感器。该器件对 2% 的应变显示出 3.61 的灵敏度 (ΔI DS / I DS)。由于对应变的高灵敏度,这些结果显示了使用 MoSe 2 TFET 作为柔性应变传感器的潜力。此外,还分析了应变 TFET 的后端电路性能。结果表明,与无应变 TFET 相比,基于受控应变的 10 级反相器链的速度和能效有显著提高。