摘要 — 数字图像相关法 (DICM) 通过获取封装中的机械应变,可有效研究功率半导体封装的故障机理。在 DICM 中,位移和应变通过摄像机捕获物体表面随机图案的图像来计算。我们开发了一种新的 DICM 系统,使用红外摄像机 (IR-DICM) 同时获取机械应变和温度分布。在以前的 IR-DICM 中,应变观察仅限于恒定条件下的高温,因此无法识别功率循环中的应力位置和阶段以进行故障机理研究。在本文中,我们成功地演示了 TO-3P 封装功率循环测试中的 IR-DICM,并使用新的样品制备和特殊的图像处理算法获得了整个功率循环过程中的应变和温度分布。
Wong,G。D. H.,Xu,Z.,Gan,W.,Ang,C.C.I.,Law,W.C.,Tang,J.,Zhang,W.,Wong,P.K.J.,P.K.J.,Yu,X. 在柔性底物上PT/CO中的应变介导的自旋轨道扭矩增强。 ACS Nano,15(5),8319-8327。 https://dx.doi.org/10.1021/acsnano.0c09404Wong,G。D. H.,Xu,Z.,Gan,W.,Ang,C.C.I.,Law,W.C.,Tang,J.,Zhang,W.,Wong,P.K.J.,P.K.J.,Yu,X.在柔性底物上PT/CO中的应变介导的自旋轨道扭矩增强。ACS Nano,15(5),8319-8327。https://dx.doi.org/10.1021/acsnano.0c09404
摘要:机械应变可用于调整单层过渡金属二核苷(1L-TMD)的光学特性。在这里,从1l-wse 2薄片的上转换光致发光(UPL)用通过十字形弯曲和压痕法诱导的双轴应变调节。发现,随着施加的双轴应变从0%增加到0.51%,UPL的峰位置被大约24 nm红移。同时,对于在-157 MeV至-37 MeV之间的宽范围内的上转换能量差,UPL强度指数增加。在三种不同的激发波长为784 nm,800 nm和820 nm处的1L-WSE 2中,UPL发射在1L-WSE 2中观察到的线性和肌功率依赖性表示多音辅助的一photon photon UpConversion发射过程。1L-TMDS的应变依赖性UPL发射的结果铺平了光子上转换应用和光电设备进步的独特途径。
四元环在药物研发中越来越受欢迎,这促使合成化学界改进和重新发明旧策略来制作这些结构。最近,应变释放概念已被用于构建复杂的架构。然而,尽管有许多策略可用于获取小碳环衍生物,但氮杂环丁烷的合成仍未得到充分开发。在这里,我们报告了一种光催化自由基策略,用于从氮杂双环[1.1.0]丁烷中获取密集功能化的氮杂环丁烷。该方案使用有机光敏剂,该光敏剂通过不同类型的磺酰亚胺精细控制关键的能量转移过程。氮杂双环[1.1.0]丁烷通过自由基应变释放过程拦截自由基中间体,从而只需一步即可获得双功能化的氮杂环丁烷。该自由基过程是通过光谱和光学技术以及密度泛函理论计算的结合揭示的。通过合成各种氮杂环丁烷目标物(包括塞来昔布和萘普生的衍生物)证明了该方法的有效性和通用性。
请将本文引用为:“全印刷应变传感器:结构健康监测系统的构建模块”Y Zhang、N Anderson、S Bland、S Nutt、G Jursich 和 S Joshi,即将出版,《传感器和执行器 A》,2016 年 10 月。DOI:10.1016/j.sna.2016.10.007
1 中国科学院微电子研究所微电子器件与集成技术重点实验室,北京 100029;wangguilei@ime.ac.cn(GW);sujiale@ime.ac.cn(JS);miaoyuanhao@ime.ac.cn(YM);lijunjie@ime.ac.cn(JL);renyuhui@ime.ac.cn(YR);lijunfeng@ime.ac.cn(JL) 2 中国科学院大学集成电路学院,北京 100049 3 北京超弦存储技术研究院,北京 100176 4 清华大学集成电路学院,北京 100086;jun-xu@tsinghua.edu.cn 5 广东大湾区集成电路与系统研究院光电混合集成电路研发中心,广州 510535; linhongxiao@ime.ac.cn (HL); liben@ime.ac.cn (BL) 6 中国科学院微电子研究所高频高压器件与集成研究发展中心,北京 100029,中国;xunmeng@ime.ac.cn 7 北方华创科技集团股份有限公司,北京 100176,中国;gushihai@naura.com 8 北京航空航天大学综合科学与工程学院费尔特北京研究所,北京 100191,中国;kaihua.cao@buaa.edu.cn 9 中瑞典大学电子设计系,Holmgatan 10, 85170 Sundsvall,瑞典* 通讯地址:kongzhenzhen@ime.ac.cn (ZK); liangrr@mail.tsinghua.edu.cn (RL); rad@ime.ac.cn (HHR);电话:+86-010-82995897(中控)
摘要 — 在本文中,我们介绍了一种基于聚合物的柔性应变传感器,该传感器与 NFC 标签集成,通过可视 LED 指示器检测应变。该传感器采用导电聚合物聚(3,4-乙烯二氧噻吩)聚苯乙烯磺酸盐 (PEDOT:PSS) 作为活性材料,位于柔性透明聚合物聚二甲基硅氧烷 (PDMS) 微通道内。应变传感器在不同弯曲条件下会改变其电阻,在弯曲约 100 次时,电阻最多可增加三个数量级。定制开发的无源 NFC 标签带有与应变传感器串联的 LED,由 NFC 读取器供电,以半定量方式检测应变。LED 指示器的光强度根据应变水平进行调制,在松弛或无应变条件下显示最大亮度(~67 勒克斯),在最大应变条件下几乎关闭(~8 勒克斯)。本文还介绍了基于 NFC 的应变传感器系统在食品包装中用于检测腐败的潜在应用。
3高级光子来源,阿尔贡国家实验室,莱蒙特,伊利诺伊州60439,美国4 Max-Planck固体化学物理学研究所,NöthnitzerStraße40,01187德累斯顿,德国,德累斯顿
方法:在此第2阶段,开放标签研究中,23例轻度认知障碍或轻度痴呆症患者每天两次接受20毫克口服NE3107,持续3个月。主要终点评估了使用先进的神经成像分析中神经生理健康和氧化应激(谷胱甘肽水平)中基线的变化。Secondary endpoints evaluated changes from baseline in neuropsychological health using cognitive assessments, including the 11-item Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog11), Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment, Clinical Dementia Rating, Quick Dementia Rating Scale, Alzheimer's Disease Composite Score, and Global Rating of Change (GRC)。探索性终点评估了神经炎症生物标志物(肿瘤坏死因子α,TNF-α)和AD(淀粉样蛋白β和磷酸化tau [p-tau])的基线变化。
摘要:近年来,应变传感器已渗透到各个领域。传感器将物理信号转换为电信号的能力在医疗保健中非常重要。但是,获得具有高灵敏度,较大工作范围和低成本的传感器仍然具有挑战性。在此Pa -per中是由双层导电网络制成的可拉伸应变传感器,包括仿生多层石墨烯 - ECOFLEX(MLG- eCoflex)底物和多层石墨烯 - 碳纳米管(MLG -CNT)复合材料上层材料。两层的联合作用导致了良好的性能,其工作范围高达580%,高灵敏度(GF因子(GF MAX)为1517.94)。此外,使用仿生静脉样结构进一步设计了压力传感器,并具有MLG -ECOFLEX/MLG -CNT/MLG -ECOFLEX的多层堆叠,以沿厚度方向获得相对较高的变形。该设备具有高传感性能(灵敏度为0.344 kPa -1),能够监测人体的小运动,例如发声和手势。传感器的良好性能以及简单的Fabri构造程序(翻转)使其具有某些应用的潜在用途,例如人类健康监测和其他人类相互作用的其他领域。