皮层电图 (ECoG) 是一种微创方法,在临床上经常用于绘制大脑致痫区域图并促进病变切除手术,并且在脑机接口应用中得到越来越多的探索。当前的设备存在局限性,需要在皮层表面覆盖率、空间电极分辨率、美观度和风险后果之间进行权衡,并且通常将映射技术的使用限制在手术室中。在这项工作中,我们报告了一种可扩展的技术,用于制造大面积软机器人电极阵列,并通过平方厘米的钻孔使用压力驱动的致动机制(称为外翻)将其部署在皮层上。可部署系统由多达六条预折叠的软腿组成,并使用水性加压溶液将其放置在皮层的硬膜下,并固定在小开颅边缘的基座上。每条腿都包含柔软的微加工电极和应变传感器,用于实时部署监控。在一项概念验证急性手术中,一个软机器人电极阵列被成功部署在一只小型猪的皮层上,以记录感觉皮层活动。这种软机器人神经技术为微创皮层手术和与运动和感觉缺陷等神经系统疾病相关的应用开辟了有希望的途径。
美国军方已在世界各地部署了作战资产。因此,灾难性的伤害可能发生在资源有限或没有资源的严酷环境中。据了解,严重创伤性脑损伤的治疗标准包括由训练有素的神经外科医生进行直接评估和治疗。1,2 由于没有足够的神经外科资产来支持所有任务,并且由于严重脑损伤军人的及时重症监护空运并不总是可用(具体取决于地点),并且由于严重和灾难性的脑损伤可能迅速致命,美国军方已经认识到偶尔需要某些非神经外科医生(通常是普通外科医生)来执行颅脑手术。3 来自国防部创伤登记处的数据表明,在伊拉克和阿富汗的 2 级外科设施中,开颅手术已被记录了 36 次,成功率不详。文献中有一些这种做法的先例,2,5-6 包括早在第二次世界大战时就提到需要这种做法。7 红十字国际委员会的战时外科论文在一定程度上提到了这一概念。8 在上述参考文献中,人们默认在严酷的地点进行神经外科手术,只要有适当的培训和资源。考虑到这一点,美国军事神经外科界有责任确保我们部署的军人和女性从非神经外科同事那里得到最好的护理。因此,本临床实践指南的目的是为非神经外科医生进行颅脑手术提供具体且量身定制的指南。该文件由三个部门的神经外科部门联合制定,旨在为面临这一困难情况的非神经外科医生提供支持。
目的立体定向放射外科 (SRS) 是治疗非小细胞肺癌 (NSCLC) 患者脑转移瘤 (BM) 的有效方法。然而,与 SRS 后软脑膜转移 (LM) 发展相关的因素仍不清楚。作者分析了 SRS 后 NSCLC 和 BM 患者中 LM 发展发生的发生率和风险因素,并研究了 LM 发展后的生存结果和预后因素。方法这项回顾性研究包括 2002 年至 2021 年期间因 MRI 诊断为 BM 而接受 SRS 治疗的 NSCLC 患者。作者记录了各种临床和人口统计数据,包括年龄、性别、肿瘤组织学、肿瘤分子特征、颅外疾病状态、既往开颅手术、卡诺夫斯基体能状态、全身治疗、肿瘤体积和 BM 数量。还记录了 LM 诊断后的治疗和生存结果。结果 在 SRS 治疗后,13.7% 的 NSCLC 和 BM 患者发展为 LM。较大的初始肿瘤体积和超过 5 个 BM 病变与 SRS 后 LM 的发展有关,但 EGFR 突变状态和 SRS 后治疗无关。多变量分析显示,对于 SRS 后 LM 患者,LM 后的化疗和靶向治疗与更好的生存相关。结论本研究首次在相对较大的 NSCLC 患者队列中评估 SRS 后 LM 的风险因素。对于存在后续 LM 风险因素(例如初始肿瘤体积和转移性病变数量)的 BM 患者,应考虑具有高 CNS 穿透能力的积极疗法。
摘要:光被广泛应用于化学、生物学和医学、荧光成像、光遗传学、光激活基因编辑、光控免疫疗法和光化学疗法等治疗癌症和病毒感染的方法中。所有基于光的方法在活体生物组织中面临的一个关键挑战是光子的穿透性差,这主要是由于散射和吸收。这种限制通常需要侵入性操作,例如对组织进行物理切片、插入光纤和内窥镜,以及手术切除上覆组织(例如开颅手术)。为了应对这些挑战,我们的实验室开发了一种超声介导的血管内光源,利用聚焦超声的深层组织穿透性。我们利用了机械发光纳米传感器 (MLNT),它们是通过生物矿物启发的抑制溶解方法合成的机械发光材料的胶体纳米颗粒。这些 MLNT 可以通过静脉输送到血液循环中,并在超声焦点处局部发光。由于超声波具有深度穿透和快速时间动力学,我们已经证明这种方法可以在活体小鼠的不同器官中以毫秒精度在高深度产生按需和动态可编程的光发射模式。这种超声介导的血管内光源使我们能够在活体小鼠中进行非侵入式“声光遗传学”神经调节,以及激活同一只小鼠大脑不同脑区的全脑“扫描光遗传学”。在演讲结束时,我将介绍光子材料的进步如何促进下一代脑机接口的发展。
神经外科或神经外科是一门医学专业,也称为脑外科,主要研究影响神经系统任何部分的疾病的预防、诊断、手术治疗和康复,包括大脑、脊髓、中枢和周围神经系统以及脑血管系统。神经外科方法在现代神经外科中,神经放射学程序用于诊断和治疗患者。计算机断层扫描 (CT)、磁共振成像 (MRI)、正电子发射断层扫描 (PET)、脑磁图 (MEG) 和立体定向放射外科是计算机辅助成像的例子。术中 MRI 和功能性 MRI 用于多种神经外科手术。在传统的开放式手术中,神经外科医生会在颅骨上钻一个大孔以进入大脑。显微镜和内窥镜目前正在用于涉及较小孔径的技术。小开颅手术与高分辨率显微镜神经组织观察相结合,可产生出色的效果。另一方面,开放式手术仍常用于创伤和紧急情况。在神经外科的几个部分,使用显微外科手术。在 EC-IC 搭桥手术和修复性颈动脉末端切除术中,应用了显微血管技术。动脉瘤夹闭是在显微镜下进行的。显微镜或内窥镜用于微创脊柱手术。显微外科手术用于包括显微椎间盘切除术、椎板切除术和人工椎间盘置换术在内的手术。神经外科医生可以使用立体定位通过小孔径定位大脑中的小目标。这用于功能性神经外科手术,例如在帕金森病或阿尔茨海默病的情况下,当电极
第 7 层皮质接口:一种可扩展且微创的脑机接口平台 Elton Ho 1*、Mark Hettick 1*、Demetrios Papageorgiou 1、Adam J. Poole 1、Manuel Monge 1、Maria Vomero 1、Kate R. Gelman 1、Timothy Hanson 1、Vanessa Tolosa 1、Michael Mager 1、Benjamin I. Rapoport 1 + 1 Precision Neuroscience Corporation,美国纽约州纽约市和加利福尼亚州旧金山市 * 这些作者对本文的贡献相同 + 通讯作者 摘要 脑机接口的发展进展标志着在各种疾病状态下恢复、替换或增强丢失或受损的神经功能的潜力。现有的脑机接口依赖于侵入性手术或穿脑电极,这限制了该技术的可寻址应用和符合条件的患者数量。本文描述了一种构建神经接口的新方法,包括可适形薄膜电极阵列和微创手术输送系统,它们共同促进了与大部分皮质表面的双向通信(可同时进行记录和刺激)。我们证明了将包含超过 2,000 个微电极的可逆植入物同时快速输送到哥廷根小型猪大脑两个半球的多个功能区域的安全性和可行性,无需开颅手术,有效插入速率快于每通道 40 毫秒,不会损坏皮质表面。我们进一步展示了该系统在高密度神经记录、局部皮质刺激和精确神经解码方面的性能。这样的系统有望加速更好地解码和编码神经信号的努力,并扩大可从神经接口技术中受益的患者群体。
脑机接口的发展进步预示着在各种疾病状态下恢复、替代和增强丧失或受损的神经功能的潜力。目前开发高带宽脑机接口的方法依赖于侵入性外科手术或穿透大脑的电极,这限制了该技术的可寻址应用和符合条件的患者数量。本文介绍了一种构建神经接口的新方法,包括可适形薄膜电极阵列和微创外科手术输送系统,它们共同促进与大部分皮质表面的双向通信(实现记录和刺激)。我们证明了将包含 2,000 多个微电极的可逆植入物同时输送到大脑两个半球的多个功能区域的可行性和安全性,无需开颅或损伤皮质表面,有效插入速率快于每通道 40 毫秒。我们进一步评估了该系统在植入后立即进行高密度神经记录和可视化皮质表面活动的性能,其空间和时间分辨率和范围在多个临床前大型动物研究以及一项涉及麻醉和清醒神经外科患者的五名患者试点临床研究中是不可能实现的。我们描述了感觉运动活动和言语在皮质表面呈现的空间尺度,展示了对体感、视觉和意志行走活动的精确神经解码,并通过亚毫米级的皮质刺激实现了精确的神经调节。由此产生的系统可生成 90 Gb/h 的电生理数据,并展示了微皮层电图的高度可扩展性及其对下一代脑机接口的实用性,这可能会扩大可从神经接口技术中受益的患者群体。
背景:目前,清醒脑外科手术期间的语言映射是一种标准程序。然而,对于对社交互动很重要的其他认知功能,如视觉空间认知和非语言,包括面部表情和眼神注视,很少进行映射。这种遗漏的主要原因是缺乏与手术室的限制性环境和清醒脑外科手术程序完全兼容的任务。目的:本研究旨在评估配备眼动追踪设备的虚拟现实耳机的可行性和安全性,该耳机能够为接受清醒开颅手术的患者提供身临其境的视觉空间和社交虚拟现实 (VR) 体验。方法:我们招募了 15 名语言和/或运动区域附近有脑肿瘤的患者。语言映射是通过命名任务 DO 80 进行的,该任务在计算机平板电脑上呈现,然后通过 VRH 以 2D 和 3D 形式呈现。患者还沉浸在视觉空间和社交 VR 体验中。结果:所有患者均未出现 VR 晕动症,但有 2 名患者在术中出现局灶性癫痫发作,但没有后果;没有理由将这些癫痫发作归因于虚拟现实耳机的使用。患者能够执行 VR 任务。眼动追踪功能正常,使医疗团队能够直接分析患者的注意力和对虚拟现实耳机视野的探索。结论:我们发现在清醒脑部手术期间让患者沉浸在交互式虚拟环境中是可能的,也是安全的,为新的基于 VR 的脑部映射程序铺平了道路。试验注册:ClinicalTrials.gov NCT03010943;https://clinicaltrials.gov/ct2/show/NCT03010943。
为新的和更大的问题开发智能决策支持系统驱动了人工智能(AI)的几个核心领域的发展,例如机器学习(ML)和约束编程(CP)。尽管ML和CP都成功地用于支持决策过程,但它们的组合尚未得到充分探索,尤其是在癌症研究领域。高级神经胶质瘤(HGGS)是大脑中最常见的恶性肿瘤。他们会影响各个年龄段的人,并且普遍致命。尽管进行了数十年的研究,但治疗方案缺乏靶向疗法,而是仅限于对肿瘤的手术切除(如果可能的话),然后使用辐射和DNA损伤诱导化学疗法进行治疗(Ostrom等,2018)。对这些有限和严厉的治疗的抵抗力在所有患者中都会发展出来,强调了对新的精密药房靶向方法的迫切需求。缺乏可用的治疗并不是由于缺乏努力。在过去的15年中,已经进行了超过400次临床试验,以测试新的治疗方法(Bagley等,2022),但没有显示明显的临床益处。在这一领域的一个重大问题是,对这些试验失败的原因有很糟糕的理解,因为为每个患者收集纵向样本需要开颅手术,因此在诊断后患者的短期内,高度侵入性且很少有动机的努力。因此,与其他癌症类型相比,患者衍生的细胞系和异种移植模型的可用性显着有限。总的来说,这最终意味着,当选择最合适的治疗高级神经胶质瘤的疗法时,我们正在盲目飞行。这要求将大规模基因组和功能数据与人工智能方法的紧急整合在一起,以提供决策支持工具,以提高HGG治疗的有效性,使其成为推动智能决策支持方法限制的理想应用。
目的通过观察术前脑映射方法的准确性如何随着用于分析的激活簇距离差异而变化,本研究旨在阐明如何使用术前功能性神经影像学以最大限度地提高映射准确性。方法在切除术前,使用功能性磁共振成像 (fMRI) 和脑磁图 (MEG) 映射 19 名脑肿瘤或海绵状血管瘤患者的语言功能。然后使用开颅后立即和切除前进行的直接皮质刺激映射来验证映射结果。对执行了运动 (n = 14) 和语言 (n = 12) 等效 MEG 和 fMRI 任务的患者子集进行单独和组合预测评估。此外,通过将敏感性和特异性与线性增加的距离阈值作图,确定了由 J 统计量评估的导致最大准确度的距离。结果 fMRI 显示运动和语言映射的最大映射精度均为 5 毫米。 MEG 显示,对于运动映射,40 毫米处的最大映射精度以及对于语言映射,15 毫米处的最大映射精度。在文献中使用的标准 10 毫米距离下,MEG 对运动和语言映射的特异性都高于 fMRI,但对运动映射的灵敏度较低。结合 MEG 和 fMRI 显示,对于运动映射,15 毫米和 5 毫米(分别为 MEG 和 fMRI 距离)的最大精度以及 10 毫米距离的 MEG 和 fMRI 的语言映射精度。对于运动映射,在最佳距离结合 MEG 和 fMRI 的精度高于单个预测的最大精度。结论本研究表明,fMRI 和 MEG 的语言和运动映射的精度在很大程度上取决于分析中使用的距离阈值。此外,与单独使用这两种方式相比,结合 MEG 和 fMRI 可以提高运动映射的精度。