摘要:光被广泛应用于化学、生物学和医学、荧光成像、光遗传学、光激活基因编辑、光控免疫疗法和光化学疗法等治疗癌症和病毒感染的方法中。所有基于光的方法在活体生物组织中面临的一个关键挑战是光子的穿透性差,这主要是由于散射和吸收。这种限制通常需要侵入性操作,例如对组织进行物理切片、插入光纤和内窥镜,以及手术切除上覆组织(例如开颅手术)。为了应对这些挑战,我们的实验室开发了一种超声介导的血管内光源,利用聚焦超声的深层组织穿透性。我们利用了机械发光纳米传感器 (MLNT),它们是通过生物矿物启发的抑制溶解方法合成的机械发光材料的胶体纳米颗粒。这些 MLNT 可以通过静脉输送到血液循环中,并在超声焦点处局部发光。由于超声波具有深度穿透和快速时间动力学,我们已经证明这种方法可以在活体小鼠的不同器官中以毫秒精度在高深度产生按需和动态可编程的光发射模式。这种超声介导的血管内光源使我们能够在活体小鼠中进行非侵入式“声光遗传学”神经调节,以及激活同一只小鼠大脑不同脑区的全脑“扫描光遗传学”。在演讲结束时,我将介绍光子材料的进步如何促进下一代脑机接口的发展。
主要关键词