为了解决这种设置下的计算挑战,我们首先考虑单个 NOT 门的实现。这个简单的函数已经捕获了异步设置中的基本困难。我们的关键技术结果是 NOT 函数的空间和时间上限和下限,我们的时间界限非常严格。本着分布式同步器 [Awerbuch and Peleg,FOCS'90] 的精神并遵循 [Hitron and Parter,ESA'19],我们提供了一种通用的同步器机制。我们的构造非常模块化,它基于阈值门的有效电路实现。我们方案的复杂性通过神经元数量的开销和计算时间来衡量,两者都显示为原始网络的最大延迟值和最大传入度 ∆ 的多项式。
我们引入了一种无线射频网络概念,用于从大量空间分布的自主微传感器(数量可能达数千个)中捕获稀疏事件驱动数据。每个传感器都被认为是一个微芯片,能够在将时变输入转换为脉冲序列时进行事件检测。受大脑信息处理的启发,我们开发了一种基于码分多址方法的频谱高效、低错误率异步网络概念。我们通过实验表征了几十个亚毫米级硅微芯片的网络性能,并辅以更大规模的计算机模拟。对片上时钟的不同实现进行了比较。为了测试基于脉冲的无线通信与神经形态计算技术的下游传感器群体分析自然匹配这一概念,我们部署了一个脉冲神经网络 (SNN) 机器学习模型来解码灵长类动物皮层中八千个脉冲神经元的数据,以准确预测光标控制任务中的手部运动。
光子作为信息载体,使得使用线性光学装置实现单量子比特门成为可能,但由于光子之间不直接相互作用,因此纠缠操作的设计很难实现。有一种流行的 KLM 方案 [1],其中使用测量作为替代相互作用及其改进版本 [2, 3] 与隐形传态,这大大提高了效率,并且该方案还有许多用于原子的选项(例如,参见 [4])。然而,在实验中使用经典概率方案对单粒子量子门的效率提出了更高的要求,至少在理论上是可能的。使用经典概率掩盖了量子计算机的主要问题:相干性如何在不同粒子的复杂系统中体现?
•注意:虽然可以提交遵循指南的私人测试,但测试只是考虑的一种类型的数据。在整体筛选组合的较大背景下考虑所有能力测试。FCP不鼓励家庭寻求超出FCPS向所有学生提供的额外测试。
与常规摄像机相比,事件摄像机代表了神经形态成像技术的值得注意的进步,由于其独特的优势,研究人员引起了很大的关注。但是,事件摄像机容易受到显着水平的测量噪声,这可能会对依赖于事件流的算法的性能降低,例如感知和导航。在这项研究中,我们介绍了一种新颖的方法来降级事件流,目的是填写未能准确反映出真正的对数强度变化的事件。我们的方法着重于事件的异步性质和时空特性,最终导致了新型异步时空事件的发展神经网络(ASTEDNET)。该网络直接在事件流上运行,规避将事件流转换为图像帧等密集格式的需求,从而保留其固有的异步性质。借助图形编码和时间卷积网络的原理,我们结合了时空特征注意机制,以捕获事件之间的时间和空间相关性。这可以使原始流中每个活动事件像素的分类为代表真正的强度变化或噪声。在多个数据集上针对最先进方法进行的比较评估表明,我们所提出的算法在消除噪声方面具有显着的效率和鲁棒性,同时将有意义的事件信息保留在场景中。
我们提出了简单且实用的协议,以产生与异步总订单广播所使用的随机性。协议在带有动态变化的股份的验证验证设置中安全。可以将它们插入异步的总订单广播中的现有协议中,并将其变成带有动态利益的异步总订单广播。我们的贡献依赖于两种重要技术。“君士坦丁堡中的随机甲壳:使用密码学的实用异步拜占庭一致” [Cachin,Kursawe和Shoup,PODC 2000],通过使用阈值密码来影响实用的总订单广播的设计。但是,它需要一个设置协议才能有效。在带有动态利益的验证验证设置中,必须不断地重新计算此设置,从而使协议不切实际。“异步拜占庭式拜占庭与次级交流的一致性” [Blum,Katz,Liu-Zhang和Loss,TCC 2020],展示了如何使用初始设置进行广播以渐近地生成子序列设置。该协议诉诸于完全同态加密,因此并非实际效率。我们采用动态危险将其方法采用的验证验证设置,将其应用于君士坦丁堡纸,并消除完全同构加密的需求。这将产生简单且实用的证明协议。
图 1. 使用 EEG 作为表征动态大脑反应的工具。(a)典型的 EEG 实验范例,其中向受试者呈现离散事件以引发大脑反应,同时记录 EEG 信号。(b)用刺激引发大脑反应可以比作敲击钟摆并观察其动态反应。(c)平均 ERP 方法假设特定反应活动由刺激引起并添加到自发活动中。通过根据刺激开始对多次试验进行平均,自发活动被抵消,而诱发的反应仍然存在。然而,由于大脑反应在试验间存在差异,平均 ERP 最终可能会显示模糊的反应模式(底部)。(d)真实 EEG 数据显示具有差异延迟变化的单次试验 ERP 的各个子成分。数据是从面部识别任务中单个受试者的电极 CPz 中提取的按 P3 延迟排序的单次试验 ERP(Rellecke、Sommer 和 Schacht,2012)。
摘要:直接应用脑信号来操作移动载人平台(例如车辆)可能有助于神经肌肉疾病患者恢复驾驶能力。本文开发了一种基于脑电图(EEG)信号的新型驾驶员-车辆接口(DVI),用于脑控车辆的连续和异步控制。所提出的 DVI 由用户界面、命令解码算法和控制模型组成。用户界面旨在呈现控制命令并诱导相应的大脑模式。开发了命令解码算法来解码控制命令。建立控制模型以将解码的命令转换为控制信号。离线实验结果表明,所开发的 DVI 可以生成准确率为 83.59% 的运动控制命令,检测时间约为 2 秒,而在空闲状态下的识别准确率为 90.06%。基于 DVI 开发了实时脑控模拟车辆,并在 U 型转弯道路上进行了测试。实验结果表明 DVI 用于连续和异步控制车辆的可行性。这项工作不仅推动了脑控汽车的研究,而且为驾驶员-车辆界面、多模式交互和智能汽车提供了宝贵的见解。
摘要 基于纠缠的量子网络可以通过在远距离端节点之间分发纠缠对来提供无条件安全的通信。为了实现端到端的纠缠分布,量子中继器链中总是需要进行多次纠缠交换操作。然而,由于不完善的物理设备导致纠缠交换的不确定性,交换操作的执行模式直接影响纠缠分布的性能,可归类为纠缠访问控制(EAC)问题。在本文中,我们将EAC问题归结为两个方面:量子节点内的匹配优化和量子节点间的交换冲突避免。据此,我们提出了一种异步纠缠分发协议,该协议分别包含自定义的加权最大匹配算法和可靠的信令交互机制以避免交换冲突。基于所提出的协议,量子中继器自主决定其行为并自发异步构建端到端纠缠对。仿真结果表明,我们的协议可以显著提高端到端纠缠对的纠缠分配率和保真度,同时简化量子网络的部署和管理过程。