增材制造过程中的冷加工层通过在预先设计的内部增强域中赋予复杂的全局完整性来提高韧性。由于循环打印和喷丸形成的成分高度异质,因此很难通过映射这些域中的全局完整性来理解机械行为。超声波是一种快速、无损的工具,可以测量对微观结构和残余应力的异质组织敏感的全局完整性。这项工作在将激光工程净成型 (LENS) 与 420 不锈钢上的激光喷丸循环结合后,研究了压缩行为,并通过垂直于构建方向的超声波速度和衰减测量全局完整性。© 2020 CIRP。由 Elsevier Ltd. 出版。保留所有权利。
我们引入了一个更有效的股份 - 股票,然后又有agre-agre-agre-eccast范式,用于构建ADKR,并保留自适应安全性。该方法替代了经典ADKG中昂贵的O(n)Asyn-Chronous-Chronous可验证秘密共享协议,其中O(n)便宜的公开共享成绩单的分布更便宜;在共识确认一组成品的分解后,它选择了一个小的κ-subset以进行验证,将总开销从O(n 3)降低至O(κn 2),其中κ是一个小的常数(通常约为30或更少)。为了进一步优化具体效率,我们提出了一种具有线性通信的交互式原始效率,以生成可公开可验证的秘密共享(PVSS)转录本,避免了计算上昂贵的非相互作用PVSS。此外,我们引入了分布式PVSS验证机制,最大程度地减少了不同各方的重复计算,并将主导的PVSS验证成本降低了约三分之一。
加密擦除是一种替代,有效的安全删除技术;它在存储数据并通过删除关联的密钥来擦除数据之前,将用户数据加密。数据块上细粒的加密擦除片段对幼稚的加密擦除的不切实际存储要求;不仅需要存储每个密钥,而且每个密钥都必须擦除。最新的安全删除系统使用大型擦除存储的技术解决此问题,该技术在树层次结构中递归使用加密擦除,以将所需量的键存储量减少到单个键。不幸的是,由于其同步管理加密密钥和数据以避免数据损坏,因此现有的最新安全删除系统患有高IO潜伏期。这些现有的安全删除系统也不灵活,因为它们在块层管理加密,并且无法使用存储系统使用的文件系统抽象(例如,云存储,网络文件系统和保险丝存储系统)。
抽象能够将他人的活动映射到自己的观点中,即使从很小的时候就开始是一种基本的人类技能。迈向理解这种人类能力的一步,我们介绍了EgoExolearn,这是一个大规模的数据集,该数据集在过程之后模仿人类的演示,在该过程中,个人在执行以exentric-exentric-view示范视频为指导的任务时记录了以自我为中心的视频。关注日常援助和专业支持中的潜在应用,Egoexolearn Conconconconconconconconconconcons conconce concection和示范视频数据涵盖了在日常生活场景和专业实验室中捕获的120小时的120小时。与视频一起,我们记录了高质量的凝视数据并提供了详细的多模式注释,并构建了一个游乐场,用于建模人类从不同观点桥接异步程序动作的能力。为此,我们提出了基准,例如跨视图协会,跨视图行动计划和跨视图所引用的技能评估以及详细的分析。我们期望EgoExolearn可以作为跨越观点弥合行动的重要资源,从而为创建能够通过在现实世界中观察人类进行缝隙学习的AI代理铺平了道路。数据集和基准代码可在https://github.com/opengvlab/egoeexolearn上找到。
本文介绍了一种具有新颖像素结构的自供电异步传感器。像素是自主的,可以独立收集或感应能量。在图像采集过程中,一旦像素感应到其局部照明水平,它们就会切换到收集操作模式。使用所提出的像素架构,大多数发光像素都会为传感器提供早期供电,而低照度像素则会花费更多时间感应其局部照明。因此,等效帧速率高于传统自供电传感器提供的帧速率,后者在独立阶段收集和感应照明。所提出的传感器使用首次尖峰时间读数,允许在图像质量和数据与带宽消耗之间进行权衡。该设备具有动态范围为 80 dB 的 HDR 操作。像素功耗仅为 70 pW。本文详细介绍了传感器和像素的架构。提供并讨论了实验结果。传感器规格与现有技术进行了对比。
摘要 - 基于视觉的自定位是一种至关重要的技术,用于在GPS剥夺环境中实现自主机器人导航。但是,标准帧摄像机会受到运动模糊的影响,并且动态范围有限。这项研究着重于使用基于事件的摄像机进行自定义的有效特征跟踪。这样的摄像机不提供环境的常规快照,而是异步收集与每个像素中每个像素中一小部分照明的事件,从而解决了在快速运动和高动态范围内运动模糊问题的问题。特别是,我们提出了一个基于连续的实时异步性异步跟踪管道,名为速率。此管道集成了(i)使用活动事件表面的时间切片连续初始化跟踪器,以及(ii)带有建议的“跟踪管理器”的跟踪器节点,由基于网格的分销商组成,以减少冗余跟踪器并删除差质量差的质量。使用公共数据集进行评估表明,我们的方法保持了稳定的跟踪功能,并且与仅限的事件跟踪方法相比,在维护甚至改进跟踪准确性的同时,进行实时跟踪有效。我们的ROS实施以开放源为:https://github.com/mikihiroikura/rate
有越来越多的研究项目,其目的是模拟大脑区域甚至完整的大脑,以更好地了解其工作方式。让我们引用:例如:欧洲的人类脑项目(1),通过疾病研究的综合神经技术(脑/思想)(7)或统一国家的大脑倡议(25)进行大脑映射。几种方法是可行的。有生化方法(34),它注定要像大脑一样复杂。已经研究了一种更具生物物理的方法,例如,请参见(14),其中皮质桶已成功地进行了相似,但仅限于约10个5个神经元。,人脑含有大约10个11个神经元,而像marmosets(7)这样的小猴子有6×10 8神经元(22)和一个较大的猴子,例如
· 易于操作 – 一个控制卡可用于 PROFINET、以太网/IP 和 EtherCat(简单切换总线协议)或 ASi · 为 RollerDrive 提供独立电源 · 更换时即插即用 – 无需寻址或配置 · 所有功能和 I/O 的状态显示均采用 LED · 用于零压力累积输送的集成逻辑,包括初始化 · 使用证书进行安全通信:PROFINET 一致性 B 类、以太网/IP ODVA 一致性、EtherCat 一致性 · 通过 PLC、Web 浏览器菜单和示教方法配置:– RollerDrive 的速度、旋转方向、启动和停止斜坡 – 传感器属性 – 计时器 – 错误处理 – 逻辑(单个/序列释放)· UL 认证 · 通过制动斩波器限制电压 · 可变过程图像用于优化 MultiControl 和 PLC 之间传输的数据量 · 通信线路屏蔽的功能接地 · 电压供应的极性反接保护 · 输入和输出电压供应的短路保护设计
摘 要: 采煤机是综采工作面的核心装备,研发智能采煤机器人是实现综采工作面智能化的关键。 综合分析当前采煤机机器人化研究进程中的传感检测、位姿控制、速度控制、截割轨迹规划与跟 踪控制等技术的研究现状,提出研发智能采煤机器人必须破解的 “ 智能感知、位姿控制、速度控制、 截割轨迹规划与跟踪控制、位 − 姿 − 速协同控制 ” 五大关键技术,并给出解决方案。针对智能感知 问题,提出了构建智能感知系统思路,给出了智能采煤机器人智能感知系统的架构,实现对运行 状态、位姿、环境等全面感知,为智能采煤机器人安全、可靠运行提供保障;针对位姿控制问题, 提出了智能 PID 位姿控制思路,给出了改进遗传算法的 PID 位姿控制方法,实现了智能采煤机器 人位姿精准控制;针对速度控制问题,提出了融合 “ 力 − 电 ” 异构数据的截割载荷测量思路,给出 了基于神经网络算法的截割载荷测量方法,实现了截割载荷的精准测量;提出牵引与截割速度自 适应控制思路,给出了人工智能算法牵引与截割速度决策方法和滑模自抗扰控制的牵引与截割速 度控制方法,实现了智能采煤机器人速度精准自适应控制;针对截割轨迹规划与跟踪控制问题, 提出了截割轨迹精准规划思路,给出了融合地质数据和历史截割数据的截割轨迹规划模型,实现 了截割轨迹的精准规划;提出了截割轨迹精准跟踪控制思路,给出了智能插补算法的截割轨迹跟 踪控制方法,实现了智能采煤机器人截割轨迹高精度规划与精准跟踪控制;针对 “ 位 − 姿 − 速 ” 协同 控制问题,提出了 “ 位 − 姿 − 速 ” 协同控制参数智能优化思路,给出了基于多系统互约束的改进粒子 群 “ 位 − 姿 − 速 ” 协同控制参数优化方法,实现了智能采煤机器人智能高效作业。深入研究五大关键 技术破解思路,有利于加快推动研发高性能、高效率、高可靠的智能采煤机器人。
处理。t这里有越来越庞大的研究项目,其1个目标是模拟大脑区域甚至完整的大脑2,以更好地了解其工作方式。让我们引用3个立场:欧洲的人脑项目(1),大脑4通过疾病研究的综合神经技术映射5(大脑/思想)在日本或大脑倡议(3)中,在6个联合国家中。几种方法是可行的。有7种生化方法(4),它注定了与大脑一样复杂的系统8。已经研究了一种更具生物物理的方法,例如,请参见(5),其中已成功模拟了皮质桶10,但仅限于10 5 11个神经元。然而,人脑含有约10 11个neu-12 rons,而像marmosets(2)这样的小猴子已经具有13 6×10 8神经元(6),而更大的猴子(如猕猴)具有14 6×10 9神经元(6)。15为了模拟如此庞大的网络,减少模型可以制作16个。特别是,神经元没有更多的物理形状,并且仅由具有18个特定电压的网络中的一个点表示。Hodgkin-Huxley方程(7),可以重现物理形状,代表了离子通道的动态,21,但这些耦合方程的复杂性形成了22个混乱的系统(8),使系统非常前端,使该系统非常前端,以模拟23个巨大的网络23。如果忽略了离子通道动态,则24个最简单的电压模型是集成与火的模型(9)。25使用此类模型,超级计算机26可以模拟人尺度的小脑网络,该网络达到约27 68×10 9神经元(10)。28然而,还有另一种观点,这可能使29我们可以使用简化的模型模拟此类大型网络。30的确,人们可以使用更多随机模型来重现31神经元的基本动力学:它们的插图模式。32不仅连接图的随机化,而且33图表上的动力学使模型更接近手头的34个数据,并在一定程度上解释其可变性。35随机的引入不是新的,并且在包括Hodgkin-Huxley(11)和泄漏37