*通讯作者。1 Max Planck物质结构和动态研究所,德国汉堡。2物理系,哥伦比亚大学,美国纽约,美国。 3 rwth Aachen University和Duture Information Technology的Jara-Fundamentals,Aachen,Aachen,Div foreire der der der statistischen physik。 4日本杜斯库巴国家材料科学研究所电子和光学材料研究中心。 5日本杜斯库巴国家材料科学研究所材料纳米构造研究中心。 6计算量子物理中心,西蒙斯基金会基金研究所,美国纽约,美国。 7 Cnano-BiospectRoscopy Group,Dectionalmo de Fisica de Materiales,San Sebasti´an,San Sebasti´an大学。 8理论物理学研究所和不来梅计算材料科学中心,德国不来梅大学,德国不来梅大学。 9 Laboratoire de Lecole de L'Ecole Normale Sup´erieure,Universit´e PSL,CNRS,Sorbonne Universit´e,Paris-Cit´eo,Paris-cit´eo,Paris,Paris,France。 法国德国大学学院10大学。2物理系,哥伦比亚大学,美国纽约,美国。3 rwth Aachen University和Duture Information Technology的Jara-Fundamentals,Aachen,Aachen,Div foreire der der der statistischen physik。4日本杜斯库巴国家材料科学研究所电子和光学材料研究中心。5日本杜斯库巴国家材料科学研究所材料纳米构造研究中心。6计算量子物理中心,西蒙斯基金会基金研究所,美国纽约,美国。7 Cnano-BiospectRoscopy Group,Dectionalmo de Fisica de Materiales,San Sebasti´an,San Sebasti´an大学。8理论物理学研究所和不来梅计算材料科学中心,德国不来梅大学,德国不来梅大学。 9 Laboratoire de Lecole de L'Ecole Normale Sup´erieure,Universit´e PSL,CNRS,Sorbonne Universit´e,Paris-Cit´eo,Paris-cit´eo,Paris,Paris,France。 法国德国大学学院10大学。8理论物理学研究所和不来梅计算材料科学中心,德国不来梅大学,德国不来梅大学。9 Laboratoire de Lecole de L'Ecole Normale Sup´erieure,Universit´e PSL,CNRS,Sorbonne Universit´e,Paris-Cit´eo,Paris-cit´eo,Paris,Paris,France。法国德国大学学院10大学。
*通讯作者:新泽西州普林斯顿大学化学系Alessio Amaolo,美国,美国,美国,美国,电子邮件:alessioamaolo@princeton.edu。https://orcid.org/0000-0002-9973-6872 pengning Chao,马萨诸塞州剑桥,马萨诸塞州马萨诸塞州马萨诸塞州数学系,美国马萨诸塞州,美国马萨诸塞州02139https://orcid.org/0000-0001-9287-9515 Thomas J. Maldonado和Alejandro W. Rodriguez,普林斯顿大学电气和计算机工程系,普林斯顿大学,普林斯顿大学,NJ 08544,NJ 08544,美国,Maldonado@-mail:maldonado@-mail@maldonado@crinceton.ed.ed.ed.ed.ed.ed.ed.ed.ed.ed。 arod@princeton.edu(a.w.Rodriguez)。https://orcid.org/0009-0005-0465-193X(T.J. Maldonado)Sean Molesky,蒙特利尔PolytechniqueMontréal,QuébecH3T 1J4,加拿大蒙特利尔市Polytechnique h3T 1J4,加拿大蒙特利阿尔,蒙特利克尼,eanean.molesky@polymmtky.caca。 https://orcid.org/0000-0003-3575-5166https://orcid.org/0009-0005-0465-193X(T.J. Maldonado)Sean Molesky,蒙特利尔PolytechniqueMontréal,QuébecH3T 1J4,加拿大蒙特利尔市Polytechnique h3T 1J4,加拿大蒙特利阿尔,蒙特利克尼,eanean.molesky@polymmtky.caca。https://orcid.org/0000-0003-3575-5166
垂直堆叠的范德华(VDW)异质结构具有独特的电子,光学和热特性,可以通过扭曲角工程来操纵。然而,双层界面处的弱语音耦合施加了基本的热瓶颈,以实现未来的二维设备。使用超快电子衍射,我们直接研究了照片诱导的MOS 2 /WS 2中的非平衡声子动力学,在4°扭曲角度和WSE 2 /Mose 2的旋转角度为7°,16°,16°和25°和25°。,我们确定了一个层间传热通道,其特征时间尺度为约20个皮秒,假设初始内部内部热化的分子动力学模拟比分子动力学模拟快约一个数量级。涉及声子散射的原子计算表明,此过程起源于初始层间电荷转移和散射之后的非热声子种群。我们的发现通过调整非平衡声子种群来提出VDW异质结构中热管理的途径。
固态钠离子电池 (SSSB) 的发展在很大程度上取决于超离子 Na + 导体 (SSC) 的开发,该导体具有高导电性、(电)化学稳定性和可变形性。异质结构的构建提供了一种有前途的方法,可以以不同于传统结构优化的方式全面增强这些特性。在这里,这项工作利用高配位和低配位卤化物骨架之间的结构差异来开发一类新型卤化物异质结构电解质 (HSE)。结合 UCl 3 型高配位框架和非晶低配位相的卤化物 HSE 实现了迄今为止卤化物 SSC 中最高的 Na + 电导率(室温下 2.7 mS cm − 1,RT)。通过辨别晶体本体、非晶区域和界面的各自贡献,这项工作揭示了卤化物 HSE 内的协同离子传导,并对非晶化效应提供了全面的解释。更重要的是,HSEs优异的可变形性、高压稳定性和可扩展性使得SSSB能够有效地集成。使用未涂覆的Na 0.85 Mn 0.5 Ni 0.4 Fe 0.1 O 2和HSEs的冷压正极电极复合材料,SSSBs表现出稳定的循环性能,在0.2 C下经过100次循环后容量保持率为91.0%。
近年来,基于新兴的二维(2D)材料,对经济和有效数据处理的需求导致对神经形态计算的兴趣激增。作为具有许多有趣特性的上升范德华(VDW)P型Weyl半导体,Tellurium(TE)已被广泛用于高级电子/光电子。但是,从未探索过其应用程序的应用门(FG)内存设备进行信息处理。在此报道,由TE基于TE的2D VDW异质结构启用了用于多模式储层计算(RC)的电子/光电FG存储器。受到强烈的电气/光学刺激的约束,该设备表现出令人印象深刻的非挥发性电子记忆行为,包括≈108灭绝比,≈100ns开关速度,> 4000个循环,> 4000-S的保留稳定性和非挥发性稳定性和非挥发性的多端口多端口选择性选择可编程可编程特性。当输入刺激削弱时,非易失性存储器会降解为挥发性记忆。利用这些丰富的非线性动力学,这是一个多模式RC系统,具有高识别精度为90.77%的多模式系统,用于事件类型的多模式手写数字识别。
摘要:调节各向异性声子极地(PHP)可以打开红外纳米光子学的新途径。通过极化杂交的有希望的PHP色散工程已通过将门控石墨烯与单层α -Moo 3耦合来证明。然而,与门依赖性杂交调制的基础机制仍然难以捉摸。在这里,使用IR纳米光谱成像,我们证明了光学响应函数的主动调节,并在测量杂交等离激元 - Phonon -Polaritons(HPPPS)的波长,振幅和耗散速率的栅极依赖性中进行了量化。有趣的是,尽管石墨烯掺杂导致HPPP波长,振幅和耗散速率的单调增加表明从最初的反相关减少到相关增加的过渡。我们将这种行为归因于HPPP复合动量的栅极相关组件的复杂相互作用。我们的结果为综合α -moo 3纳米素体设备的积极偏振子控制奠定了基础。关键字:栅极 - 调整,混合等离子体 - 声子极化子,扭曲的α-MOO 3,分散,s -snom
磁性隧道连接点(MTJ)是非挥发性随机访问记忆(MRAM)技术的领先存储成分。1,2它由夹在两个磁层层之间的薄隧道屏障层组成,提供快速开关速度,高耐力和低功耗。3,随着大数据和物联网的不断增长,优化了MTJ的运营,以实现较低的能源消耗以获得高密度记忆,并且更快的数据处理变得至关重要。4一种有效且易于访问的方法来操纵MTJ,正在使用电场,该电场在铁磁/铁电力多性异质结构中实现。5 MTJ Spintronic设备的行为和性能受到异质结构之间的界面的显着影响。4因此,实现MTJ的高质量接口对于充分利用其功能并增强数据处理速度至关重要。二维(2D)范德华(VDW)磁铁的出现为结构VDW异质结构提供了有前途的途径,与原子尖锐的互相互相互相互相耦合,6 - 14,这使得它使IT可以探索MTJ Pertronic设备的新颖电子控制。4,15近年来,在全VDW MTJ中,在带有隧道屏障HBN,MOS 2和INSE的全VDW MTJ中,在自旋阀设备中进行了显着的前进。16 - 21个最近的研究在低温下通过VDW异质结构中的电子均值报道了TMR。23 - 2516然而,在室温下实现TMR操作的电气控制仍然是一个持续的挑战,迄今为止,VDW异质结构尚未实现室温可调TMR。永远,发现2D VDW铁磁(FM)金属Fe 3 Gate 2,22,其在室温高于室温(居里温度≈350 - 380 K)上表现出强烈的铁磁作用,并稳健的大型垂直磁性各向异性,可以打开VDW旋转器件中房间温度旋转操作的可能性。
1 College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China 2 Nanhu Laser Laboratory, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China 3 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, People's Republic of China 4 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, People's Republic of China 5 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, People's Republic of China 6 Institute for新加坡新加坡国立大学功能智能材料,新加坡117544,新加坡材料科学与工程系,新加坡国立大学,新加坡117575,新加坡
abbit biswas *,rui Xu,Gustavo A. Alvarez,Jin Zhang *,Joyce的Christian-Salamheh,Anand B. Pummirath,Corry Burns,Jordan A. Elkins,Tymophi S. Paykov,Robert Vaggei,A。Glen Birdwell,Mahesh R. Neupnae,Elias J. Garatt,Tony G. Evanov,Bradford b。pate,Yuji Zhao,Hanue Zhu *,Zhiting Tea *,Angel Rubio *和Pulickel M. Ajayan *