太阳能转换过程不仅存在于太阳能电池中,也存在于光催化中,涉及太阳光收集和光激发电荷载流子分离/传输。[8,9] 异质结构是将具有不同性质的材料集成在一起,通常可以收集来自多种组分的广泛太阳光,并且受益于异质界面形成的内部电场而具有显著的光激发电荷分离/传输特性。[10] 因此,探索合适的组分来构建异质结构是提高太阳能转换效率的一种有效且简便的策略。如今,二维材料由于其高比表面积、[11] 大量的表面暴露原子、[12] 以及优异的机械、光学和电子性能,在光电器件、催化和太阳能转换领域引起了极大的研究兴趣。[13,14] 得益于层状结构特性,二维材料易于构建成异质结构。通常,二维异质结构包括垂直异质结构(其中各种二维材料层垂直堆叠)[15] 和横向异质结构(其中多个二维材料横向无缝缝合)。[16] 目前报道的二维异质结构大多
在基于量子阱的异质结构材料中,研究能态密度对量化磁场强度和占据的依赖关系,可以为纳米级半导体结构中电荷载流子的能谱提供有价值的信息。当低维半导体材料暴露于横向量化磁场时,能态密度可以通过动力学、动力学和热力学量的振荡依赖关系来测量——磁阻、磁化率、电子热容量、热电功率、费米能和其他物理参数 [3, 4]。由此可见,在横向和纵向磁场存在下研究矩形量子阱导带能态密度的振荡是现代固体物理学的迫切问题之一。
简单的苏格兰胶带将其剥落到本构单层。[1]高温超导体(HTSC)提供多种这样的分层相关系统。Remarkably, even the atomically thin Bi 2 Sr 2 CuCa 2 O 8 + δ (BSCCO) layers, i.e., the layers containing a single or a few ele- mentary cells, have been found to possess the superconducting transition tempera- ture close to that of the bulk samples [2,3] and showed the superconductor–insu- lator transition driven by the evolution of the density of states.[4]由于这些属性,HTSC可以用作VDW异质构造的起始块。但是,隔离拥有超导性的铜酸盐单层仍然是一项艰巨的任务,尤其是如果人们希望实现薄而结晶的界面。关键是,如果在环境气氛下被氧气污染,原子上的BSCCO薄片会高度绝缘。[1,5]拉曼测量结果[5,6]报道了薄BSCCO薄片中氧气的高化学活性。更详细的研究[7]表明,水分子也可以迅速恶化BSCCO薄片的表面。此外,铜层中的氧气掺杂剂在上方移动
摘要:调节各向异性声子极地(PHP)可以打开红外纳米光子学的新途径。通过极化杂交的有希望的PHP色散工程已通过将门控石墨烯与单层α -Moo 3耦合来证明。然而,与门依赖性杂交调制的基础机制仍然难以捉摸。在这里,使用IR纳米光谱成像,我们证明了光学响应函数的主动调节,并在测量杂交等离激元 - Phonon -Polaritons(HPPPS)的波长,振幅和耗散速率的栅极依赖性中进行了量化。有趣的是,尽管石墨烯掺杂导致HPPP波长,振幅和耗散速率的单调增加表明从最初的反相关减少到相关增加的过渡。我们将这种行为归因于HPPP复合动量的栅极相关组件的复杂相互作用。我们的结果为综合α -moo 3纳米素体设备的积极偏振子控制奠定了基础。关键字:栅极 - 调整,混合等离子体 - 声子极化子,扭曲的α-MOO 3,分散,s -snom
这项工作表明了通过将铁电batio 3(BTO)整合为底层,半导体MOO 3作为中间层和等离激元银纳米颗粒(Ag nps)作为顶层,将有效的三元异质结构光催化剂制造为底层,半导体MOO 3。Batio 3 /Moo 3 /ag(BMA)异质结构在紫外线batio 3 /ag(BA(BA)和MAO时,在UV -Visible Light Plintination下,若丹明B(RHB)染料的光降解和光催化效率为100%,在60分钟下显示为60分钟。BMA异质结构中的光催化活性增加归因于其增强的界面电场,这是由于BTO -MOO 3和MOO 3 -ag界面的电动双层形成。对BMA异质结构观察到的表面等离子体共振(SPR)峰的较高蓝光清楚地表明,在光照明下,电子向顶部AG NPS层的转移增加了。较高的电阻开关(RS)比,电压最小值的差异增加以及改善的光电流产生,从I – V特性中可以明显看出,这说明了BMA异质结构中增强的电荷载体的产生和分离。在BMA异质结构的Nyquist图中观察到的较小的弧形半径清楚地展示了其增加的界面电荷转移(CT)。还研究了BMA异质结构的CT机制和可重复使用性。
固态钠离子电池 (SSSB) 的发展在很大程度上取决于超离子 Na + 导体 (SSC) 的开发,该导体具有高导电性、(电)化学稳定性和可变形性。异质结构的构建提供了一种有前途的方法,可以以不同于传统结构优化的方式全面增强这些特性。在这里,这项工作利用高配位和低配位卤化物骨架之间的结构差异来开发一类新型卤化物异质结构电解质 (HSE)。结合 UCl 3 型高配位框架和非晶低配位相的卤化物 HSE 实现了迄今为止卤化物 SSC 中最高的 Na + 电导率(室温下 2.7 mS cm − 1,RT)。通过辨别晶体本体、非晶区域和界面的各自贡献,这项工作揭示了卤化物 HSE 内的协同离子传导,并对非晶化效应提供了全面的解释。更重要的是,HSEs优异的可变形性、高压稳定性和可扩展性使得SSSB能够有效地集成。使用未涂覆的Na 0.85 Mn 0.5 Ni 0.4 Fe 0.1 O 2和HSEs的冷压正极电极复合材料,SSSBs表现出稳定的循环性能,在0.2 C下经过100次循环后容量保持率为91.0%。
1彼得·格伦伯格研究所(PGI 10),福斯申斯特鲁姆·尤里奇(ForschungszentrumJülich),威廉 - 约翰·斯特拉斯(Wilhelm-Johnen-Straße),尤里奇(Jülich)52425,德国2 IHP - 莱布尼兹(Leibniz) - 莱布尼兹(Leibniz ElmshöherAllee 71,Kassel 34121,德国4分校技术研究所(IHT),Stuttgart,Pfaffenwaldring 47,Stuttgart 70569,德国5伊布尼兹水晶增长研究所,麦克斯 - 斯特拉斯2,柏林12489,德国7 Dipartimento di Scienze,Universit`roma tre,Viale G. Marconi 446, I-00146,罗马,意大利 8 实验物理和功能材料,BTU Cottbus-Senftenberg,Erich-Weinert-Str。 1,03046,科特布斯,德国
1 中国科学院物理研究所北京凝聚态物理国家实验室,北京 100190;baiqinghu@iphy.ac.cn (QB);yangguo@aphy.iphy.ac.cn (YG);azjin@iphy.ac.cn (AJ);quanbaogang@iphy.ac.cn (BQ);hfyang@iphy.ac.cn (HY);blliu@iphy.ac.cn (BL) 2 中国科学院大学物理学院,中国科学院真空物理重点实验室,北京 100190 3 松山湖材料实验室,东莞 523808;liangqijie@sslab.org.cn 4 深圳大学射频异质集成国家重点实验室,深圳 518060;2200434018@email.szu.edu.cn (TL) wgliao@szu.edu.cn (WL) 5 深圳大学电子信息工程学院,深圳 518060,中国 6 中国科学院大学,中国科学院拓扑量子计算卓越中心,中国科学院真空物理重点实验室,北京 100190,中国 * 通信地址:xinhuang@iphy.ac.cn (XH); czgu@iphy.ac.cn (CG) † 这些作者对这项工作做出了同等贡献。
抽象2D铁电/石墨烯异质结构是通过机械去角质制造的,横穿异质结构界面的载体动力学已通过拉曼,光致发光和瞬态吸收测量值进行了系统地研究。由于有效的界面照片激发电子传递和捕获孔的光吸收效果,异质结构设备显示出卓越的性能,最大响应性为2.12×10 4 A/W,在λ= 532 nm laseer Illumuminention下,探测率为1.73×10 14 jones和快速响应时间(241 µS)。此外,还研究了受铁电化场影响的照片反应。我们的工作确认铁电β-inse/石墨烯异质结构是敏感光电应用的出色材料平台。
由亚波长大小的金属或介电纳米结构二维排列组成的光学超表面可用于操纵亚波长厚度层的光特性。1–4 光学超表面被认为是完美的 5 和选择性 5,6 吸收器和透镜。7 光学超表面的可能应用包括与 CMOS 图像传感器结合用作滤波器 8 或用作生物传感器的构建块。9,10 相比之下,很少有人尝试将超表面直接整合到光电器件中,并利用其波长选择性和偏振选择性等特性。金属超表面已与体光电探测器相结合,用于光电流增强和传感。11,12 介电超表面已被构造到体 Si 和 Ge 光电二极管的顶层,以增强宽带响应度。13