在扭曲的双层系统中观察到的多样化和有趣的现象,例如石墨烯和过渡金属二核苷,引发了有关它们可能托管的新兴效应的新问题。然而,在足够大以进行光谱研究的规模上实现这些结构的实际挑战仍然是一个巨大的障碍,导致直接测量扭曲过渡金属二甲基化元素双层的电子带结构的直接测量很少。在这里,我们提出了一个系统的纳米级角度分辨光发射光谱调查,对散装,单层和扭曲的双层WS 2的光发射调查,小扭曲角为4.4°。实验结果与基于高对称方向的密度函数理论的理论计算进行了比较。出乎意料的是,电子带结构的测量表明,结构弛豫以4.4°扭曲角出现,并形成了大型,不WIST的双层区域。
摘要 :GaAs 基材料系统因可承载具有出色光学特性的 InAs 量子点 (QD) 而闻名,这些量子点的发射波长通常为 900 nm 左右。插入变质缓冲区 (MMB) 可以将这种发射转移到以 1550 nm 为中心的具有技术吸引力的电信 C 波段范围。然而,常见 MMB 设计的厚度(> 1 𝜇 m)限制了它们与大多数光子谐振器类型的兼容性。在这里,我们报告了一种新型 InGaAs MMB 的金属有机气相外延 (MOVPE) 生长,该 MMB 具有非线性铟含量渐变分布,旨在在最小层厚度内最大化塑性弛豫。这使我们能够实现晶格常数的必要转变并为 180 nm 内的 QD 生长提供光滑的表面。展示了沉积在此薄膜 MMB 顶部的 InAs QD 在 1550 nm 处的单光子发射。通过纳米结构技术将新设计集成到靶心腔中,证明了新设计的强度。
能够生长出二维 (2D) 材料等尖端晶体材料的高质量异质外延膜,是开发前沿技术应用的先决条件。二维材料(及其异质结构)是一种堆叠结构,相邻块之间具有弱范德华 (vdW) 相互作用,而每个块内具有强共价键。这一特性使得我们有可能分离二维晶片,将其用作构建块,以创建堆叠的二维晶体序列(称为 vdW 异质结构),这种结构具有新奇的特性和奇特的物理现象。[1,2] vdW 异质结构为电子学、光电子学、柔性器件、传感器和光伏等领域的广泛应用铺平了道路。[3–5] 然而,要实现工业化应用,就必须发展大规模沉积,这就意味着必须掌握 vdW 外延生长技术。 [6] 尽管过去几年人们对范德华外延的兴趣重新燃起,研究工作也愈发深入,[7] 但对范德华外延的一般描述和完整理解将有助于快速解决许多问题。例如,当使用石墨烯或其他二维晶体作为缓冲层时,对于范德华外延,下面的衬底仍可能与正在生长的薄膜相互作用。[8–15] 人们还观察到了二维和三维材料生长之间的中间行为,实际上允许在这些材料中进行应变工程。[16–21] 因此,二维材料的外延规则非常有必要,以便预测衬底表面相互作用、范德华异质结构可比性和界面生长过程中的应变弛豫。范德华能隙的形成是决定二维材料行为的基本特征。[22] 在这方面,衬底表面的电子特性和形貌在薄膜生长的早期阶段起着关键作用。生长中的薄膜和基底之间的键可以形成在悬空键和缺陷上[13,23],也可以形成在扭结和台阶边缘,从而阻止范德华能隙的形成并决定应变的积累。[16]基底和外延层之间的不同对称性也会引起一定量的应变。[24]因此,如果沉积的2D材料没有完全弛豫,则不会发生范德华外延。为了对范德华外延进行一般性描述,我们在这里研究了一个基于硫族化物 (GeTe) m (Sb 2 Te 3 ) n 合金 (Ge-Sb-Te 或 GST) 的示例案例,该合金位于 InAs(111) 表面上。GST 是一种关键的相变材料 (PCM),因其尖端技术应用而得到广泛研究。它是一种突出的
分子自旋电子学的目标是利用单个或少数分子作为自旋电子学应用的功能构建块,直接依赖于分子特性或分子与无机电极之间界面的特性。由于设备不断向小型化发展,现有硅基电子产品的摩尔定律即将终结,这些目标显得尤为重要。尽管人们对分子作为自旋传输介质的兴趣最初源于其固有的弱自旋弛豫机制导致的长自旋寿命,[5] 但人们很快意识到分子可能提供传统自旋电子学所不具备的额外选择。这是因为与无机自旋电子学中使用的材料不同,分子的结构、化学和电子特性可以以几乎无限多种方式以原子精度进行调整。当分子与无机电极接触时(这是实现单个或少数分子设备的先决条件),它们的界面相互作用可以产生标准无机界面无法实现的功能。 [3,4]
摘要:我们报道了通过近距离氮空位 (NV) 单自旋传感器对磁性绝缘体 Y 3 Fe 5 O 12 薄膜中具有宽波矢范围的磁振子进行光学检测。通过多磁振子散射过程,激发的磁振子在 NV 电子自旋共振频率下产生波动磁场,从而加速 NV 自旋的弛豫。通过测量 NV 中心发射的自旋相关光致发光的变化,可以光学访问波矢可变至 ∼ 5 × 10 7 m − 1 的磁振子,从而为揭示磁系统中潜在的自旋行为提供了另一种视角。我们的结果凸显了 NV 单自旋量子传感器在探索新兴自旋电子材料的纳米级自旋动力学方面提供的重大机遇。关键词:量子传感、氮空位磁力仪、自旋波、磁绝缘体
摘要恶性神经胶质瘤的渗透性会导致活性肿瘤扩散到周围的水肿中,即使在对比度注射后,在常规磁共振成像(CMRI)中也不可见。MR弛豫计(QMRI)测量弛豫率取决于组织特性,并可以提供其他对比机制,以突出非增强的浸润性肿瘤。在考虑深度学习的脑肿瘤检测和分割,术前常规(T1W次和对比度,T2W和FLAIR)以及定量(对比前和后对比度r 1,r 2和Proton密度)中,从23个典型的RADI中获得了一名典型的RADI,与CMRI数据相比,与CMRI序列相比是否提供了其他信息。在考虑基于深度学习的脑肿瘤检测和分割,术前常规(T1W per和Contyptrast和Contypontast,T2W和FLAIR),T2W和FLAIR)以及定量(前后和后对比度R 1,R 2和Proton MINID)MR研究中获得了23个典型的RADI较高的RADI,则获得了GREN。2D深度学习模型对使用CMRI或QMRI进行了横向切片(n = 528)的培训(n = 528),以进行肿瘤检测和分割。此外,对定量r 1和r 2的趋势通过模型解释方法与肿瘤检测相关的区域速率进行了定性分析。肿瘤检测和分割性能,用于对比前和对比后训练的模型最高(检测MATTHEWS相关系数(MCC)= 0.72,分割骰子相似系数(DSC)= 0.90),但是与CMRI相比,差异并不统计具有统计学意义。对使用模型识别的相关区域进行的总体分析表明,在CMRI或QMRI上训练的模型之间没有差异。查看各个病例时,注释以外的大脑区域的松弛率与肿瘤检测相关,在大多数情况下类似于注释中的区域类似的对比注射后显示出变化。总而言之,对QMRI数据培训的模型获得了与接受CMRI数据训练的模型相似的检测性能和分割性能,并在类似的扫描时间内定量测量脑组织性能。在考虑单个患者时,通过模型确定的区域的放松率分析表明,基于CMRI的肿瘤注释以外存在浸润性肿瘤。
宏观系统中的时间反转与日常经验相矛盾。仅通过时间反转导致杯子破碎的微观动力学,几乎不可能将破碎的杯子恢复到其原始状态。然而,借助现代量子技术提供的精确控制能力,量子系统的幺正演化可以随时间逆转。在这里,我们在原子气体中的里德堡态表示的偶极相互作用、孤立多体自旋系统中实施时间反转协议。通过改变编码自旋的状态,我们翻转了相互作用哈密顿量的符号,并通过让退磁多体状态随时间演化回磁化状态来展示磁化弛豫动力学的逆转。我们使用洛施密特回声的概念阐明了原子运动的作用。最后,通过将该方法与弗洛凯工程相结合,我们展示了具有不同对称性的大量自旋模型的时间反转。我们的状态转移方法适用于广泛的量子模拟平台,其应用范围远远超出量子多体物理学,涵盖从量子增强传感觉到量子信息扰乱。
圆锥交叉点是分子汉密尔顿量的势能表面之间的拓扑保护交叉点,在光异构化和非辐射弛豫等化学过程中起着重要作用。它们以非零 Berry 相为特征,Berry 相是定义在原子坐标空间中一条闭路径上的拓扑变量,当路径绕过交叉流形时取π值。在本文中,我们表明,对于真实的分子汉密尔顿量,Berry 相可以通过沿所选路径追踪变分假设的局部最优值并用无控制的 Hadamard 检验估计初态和终态之间的重叠来获得。此外,通过将路径离散化为 N 个点,我们可以使用 N 个单独的 Newton-Raphson 步骤来非变分地更新我们的状态。最后,由于 Berry 相只能取两个离散值(0 或 π),因此即使累积误差受常数限制,我们的程序也能成功;这使我们能够限制总采样成本并轻松验证程序的成功。我们用数字方式证明了我们的算法在甲醛亚胺分子(H 2 C––NH)的小玩具模型上的应用。
蚤『壼予昨日蒲=’2清、清、淺、稻田吾”入、H岩基、□岸”足小螂Ⅷ『”中泣、鳕、稻扒、ミ、特、ミ、編、’⊃眠部扒、K吾、瑾語、岬、’壼K何、0、る、さ、’ヽそ、也、ヽ、稻田、ヽ、人、起、さ、⊃作、冲、る、さ、淺、蒲、岸、・=●ヽ、る、そ、編、ヽ、ヽ、也、式、居、0、る、攻、返、愈榆木¨(')基于螺旋o峰绿C型Okitesuke r(')Sa居住螺旋版・■ヽKo o o ∞唱歌预测ヽHa也型驱动0
4型分泌系统是大型且用途广泛的蛋白质,可通过水平基因转移促进抗生素耐药性和其他毒力因子的传播。共轭类型4分泌系统依赖于放松酶来处理DNA以准备运输。trai来自研究良好的质粒PKM101就是一种这样的松弛酶。在这里,我们报告了TRAI与其底物DNA复合物的跨酯酶结构域的晶体结构,突出了共轭弛豫酶的保守DNA结合机理。此外,我们还提出了TRAI的跨酯酶结构域的APO结构,其中包括大多数动力的拇指区域。这使我们第一次可以看到DNA结合时拇指子域的大构象变化。我们还表征了跨酯酶结构域,解旋酶结构域和全长TRAI的DNA结合,缺口和宗教活动。与文献中的先前指示不同,我们的结果表明,来自PKM101的Trai转源酶结构域以保守的方式表现出R388和F质粒的同源物。