磁铁最近根据对称转换分为三种类型:铁磁铁(FM),抗铁磁铁(AFM)和Altermagnets(AM)[1-3]。铁磁体或铁磁铁(包括luttinger补偿的铁磁铁,请参见参考资料[2])表现出净磁性,这打破了电子结构中的时间反转对称性。另一方面,抗铁磁铁表现出相反的自旋sublattices,并通过翻译和 /或inver-sion,对称转换,导致时间反向对称能带和零磁化。相反,在altermagnets中,相反的旋转均匀旋转与对称操作(如在AFM中,但在FM中为不相反),这些操作不是反转或翻译,导致时间逆转的对称性对称性的损坏的损坏的电子结构与均值和动量空间的交替旋转和零元素化元素和零元素的交替[1] (如FM,但不在AFM中)。自旋分裂带破坏了时间逆转对称性,如FM中,但在AFM中不违反。此外,交替的自旋分裂遵循D-,G-或I波对称性,该对称性与FM中自旋分裂的对称性不同。可以在球形谐波中扩展这种在动量空间中的交替自旋极化(与非常规的超导二极管理论所做的几乎一样),并且根据基础对称性,可以表现出D-,G-,G-或I-Wave磁性密度为2,4或6 Spine-4或6 Spin spine-nodeal Nodal nodal nodal surfaces [1] [1] [1]。非常明显地,预测了许多与Altermagnetism相关的异常效应。1,超出了这项工作的范围。它们具有反常的大厅效应[4,6],晶体磁臂Kerr效应[5,7,8],大型非差异旋转分裂[4,9,10],自旋旋转的纵向和横向电流和横向电流[11-13] [11-13],巨型和隧道磁力磁盘[13,14],非术语[16],topitigy tocient [15] [15] [15] [15] [15] [15] [15] [15] [15] [15],[15]配对[17],各向异性Andreev反射[18],非常规的约瑟夫森效应[19],镁旋转裂解[20],手工有序的mul-tip tip [16,21],无单位的三胞胎超导性,并与平均抑制和抑制的次数相结合的阶参数的顺序进行了consectional superfective and-consuctor consuctor consuctor consuctal in Interface。altermagnetism在多种材料家族中可以找到对于研究其在旋转型,物质,超导性或半导体电子中的相关状态中的应用至关重要的(另请参见《透视文章》中的参考文献综合列表[3])。二次动量依赖性自旋分裂[23]。到目前为止,已经确定了几种候选材料,但是在每种情况下,它都是通过手动检查对称性操作和 /或计算带结构并验证其自旋分解的。此外,由于后一个测试无法区分AM和补偿FM,因此在这方面存在相当大的构造[24]。这项工作旨在创建一个程序(和图书馆),该程序采用晶体结构和磁性模式,并决定它是抗铁磁磁性还是抗铁磁性(排除铁磁材料是微不足道的)。用户请求的输入是有关晶体结构(支持各种晶体结构格式)和磁性模式的信息。请注意,如参考资料所建议的,将给定的Altermagnet进一步分类为十个类之一。
背景:由于工作量较高,建筑工人容易受到疲劳的影响。这项研究旨在调查建筑工人过度劳累与心率之间的关系,并提出一种预先锻炼的计划。方法:我们从2021年8月至10月10日在首尔的住宅和商业综合体的建筑工地进行了建筑工人的心脏速度,并开发了一个实时监视劳累过度工作的指数。穿着实时心率监测设备,共有66名韩国工人参加了这项研究。使用最小和最大心率计算相对心率(RHR),并使用RHR估算最大可接受的工作时间(MAWT)来计算工作量。过度劳累指数(OI)定义为用MAWT评估的累积工作量。将适当的方案线(PSL)设置为一个索引,可以与OI进行比较,以实时评估过度劳动的程度。使用OI和PSL之间的差异,在工作性能期间实时评估了多余的劳累指数(EOI)。EOI值用于执行接收器操作特征(ROC)曲线分析,以找到用于分类状态分类的最佳截止值。结果:在分析的60名参与者中,有28名(46.7%)根据其RHR分类为劳累组。ROC曲线分析表明,EOI是过度劳累的良好预测指标,曲线下方的面积为0.824。最佳截止值范围为21.8%至24.0%,具体取决于确定截止点的方法。结论:EOI显示出令人鼓舞的结果,作为一种预测工具,可以使用MAWT进行心率监测和计算,以评估过度劳动。需要进一步的研究来准确评估身体工作量并确定各行业的截止值。
本论文由 UNM 数字存储库的工程 ETD 免费提供给您,供您开放访问。它已被 UNM 数字存储库的授权管理员接受并纳入土木工程 ETD。欲了解更多信息,请联系 disc@unm.edu 。
海上运输中向低碳未来的过渡需要详细了解海洋燃料的生命周期碳强度(CI)。否则,所有井井有条(WTT)的排放量对该行业的总温室气体排放产生了重大贡献;然而,许多研究缺乏全球视角,仅部分解释了上游运营,原油运输,炼油,液体运输和分配。这项研究评估了在全球范围内在资产水平上评估液化石油气(LPG)的高硫燃料(HSFO)和井井有条出口(WTR)CI的WTT CI。HSFO代表一种传统的,广泛使用的海洋燃料,而LPG由于其较低的储罐到烘烤排放量以及与氨(如氨(如氨)的兼容性,因此是潜在的过渡燃料。使用石油生产温室气体排放估计器(OPGEE)和石油炼油生命周期库存模型(PRELIM)工具以及基于R的基于R的地理空间和统计方法,该工作得出了72个国家 /地区(HSFO)和74个国家(LPG)(LPG)的国家 /地区的CI值,覆盖了98%的全球HSFO和LPG REFIN。结果表明,世界各地生产的海洋燃料表现出明显不同的气候影响,强调并非所有燃料都相等。HSFO上游CI范围为1至22.7 GCO 2 E/MJ,CI从1.2到12.6 GCO 2 E/MJ,全球量 - 加值平均wtt-WTT CI为12.4 GCO 2 E/MJ。分别为HSFO,上游和炼油占WTT CI的55%和32%,其中大规模出口商和强化炼油做法(例如,俄罗斯,中国,美国,伊朗)具有更高的排放。在由WTR边界定义的炼油厂采购的LPG途径中,上游CI范围为0.9至22.7 GCO 2 E/MJ,CI的CI范围为2.8至13.9 GCO 2 E/MJ,并且体积 - 加权-WTREVERED-WTR-WTR CI为15.6 GCO 2 E/MJ。精炼占LPG WTR CI的49%,而上游和运输分别占44%和6%。液化石油气部门的主要参与者包括中国,美国和俄罗斯。这些发现揭示了各个国家的WTT和WTR CIS的显着可变性和供应链,为有针对性的政策提供了减少排放的机会。
概述 此参考表旨在帮助您将您的房产的能源使用量与类似房产的全国中位数(或中点)进行比较。 对您的房产进行基准测试 在 Portfolio Manager 中进行基准测试时,我们建议您重点关注建筑的主要功能(或主要活动)。首先从下表中选择您的主要功能,然后输入尽可能少的其他使用类型。使用单一使用类型对您的建筑进行基准测试将最接近您的建筑在参考数据调查中的记录方式,因此可以最准确地与中位数性能进行比较。 在某些情况下,建筑可能具有多种截然不同的用途。例如,办公室和酒店共用一栋建筑。在这些混合用途设置中,输入多种使用类型是合适的。所有房产类型的定义均可在以下网址找到:www.energystar.gov/PMGlossary。 使用中位数场地和源能源使用强度 (EUI) 全国中位数源 EUI 是所有建筑的推荐基准指标。中位数是全国人口的中间值——一半的建筑消耗更多的能源,一半消耗更少的能源。在比较相对能源性能时,中位数比平均值(算术平均值)更准确,因为它更准确地反映了大多数房产类型的能源使用的中间点。该表显示了场地 EUI 和源 EUI 的中位数。场地 EUI 是您可能在水电费账单中熟悉的。场地 EUI 包含所谓的一次能源(即天然气等原始燃料)和二次能源(即电力或区域蒸汽等转换产品)。源能源提供了将一次和二次能源类型组合成一个公共单位的最公平的方式,确保任何建筑都不会根据其能源来源或效用获得积分或罚款。您可以在 www.energystar.gov/SourceEnergy 了解有关源能源及其计算方式的更多信息。我们强烈建议您使用源 EUI。虽然几乎所有商业建筑类型都有一个全国中位数来源 EUI,但有些(以青色表示)还会有 1-100 的 ENERGY STAR 评分。该评分评估一栋建筑相对于其同类建筑的表现,类似于中位数能源使用值,同时也会根据气候和商业活动进行调整。您可以在以下网址了解有关评分的更多信息:www.energystar.gov/ENERGYSTARScore。了解参考数据表格中最右边的列表示我们用来确定同类建筑中位数性能的参考数据源。为了计算全国中位数,我们始终依赖全国代表性数据。对于大多数房产类型,参考数据来自商业建筑能耗调查 (CBECS)。这是由美国能源部能源信息署进行的一项全国性调查(有关更多信息,请访问:http://www.eia.gov/consumption/commercial/ )。数据中心、废水处理厂和多户住宅参考了另外三项调查。有关这些调查的更多信息,请参阅每种物业类型的技术参考文件。
模型 BERT BERT 6B Dense Dense Dense ViT ViT ViT ViT ViT 微调预训练 Transf。 121 169 201 微型 小型基础 大型 巨型 GPU 4 · V100 8 · V100 256 · A100 1 · P40 1 · P40 1 · P40 1 · V100 1 · V100 1 · V100 4 · V100 4 · V100 小时 6 36 192 0.3 0.3 0.4 19 19 21 90 216 千瓦时 3.1 37.3 13,812.4 0.02 0.03 0.04 1.7 2.2 4.7 93.3 237.6 表 2. 对于我们分析的 11 个模型:GPU 的类型、该类型的 GPU 数量、小时数以及所用的能量(千瓦时)。例如,我们的 BERT 语言建模 (BERT LM) 实验使用了 8 个 V100 GPU,持续了 36 个小时,总共使用了 37.3 千瓦时。我们注意到,60 亿参数转换器的训练运行时间仅为训练完成时间的约 13%,我们估计完整的训练运行将消耗约 103,593 千瓦时。
本报告涵盖了 WPI0 内的活动,该活动的目的是审查现代陶瓷材料的电气强度测试。描述了开展这项工作的背景以及所采用的实验方法。使用氧化铝基板产品和两种 PZT 压电材料,研究了与样品的几何形状和生产方法相关的各种因素。使用众所周知的威布尔分布对击穿数据进行统计评估,以确定该方法对电气强度的可用性。得出了以下结论。.厚度在 1.0 到 0.25 毫米之间且电气强度超过 100 kV/mm 的薄平面试件可以在变压器油中测试时进行电极化和测试,而不会出现边缘跟踪或闪络问题;.可以使用足够的试件系统地解决电气强度的差异,并且已经获得的示例表明电极面积效应、厚度效应和加工/退火效应;.无需对试件进行压痕以防止边缘闪络;在薄试件上产生小凹痕并非易事,需要专门的精密设备; .从名义上相同的样品的测试结果发现,其电气强度存在差异,可以用双参数威布尔分布来表示; .薄蒸发电极的质量必须使得击穿位置
本研究的目的是探索和实验验证复合材料补片在防止裂纹扩展和延长铝和钢船舶结构寿命方面的应用。复合材料补片通过降低裂纹尖端区域的应力起到裂纹抑制器的作用。目前存在预测复合材料补片配置有效性的分析能力,但这种分析需要特定的理想化和假设,必须通过实验验证才能将这项技术应用于实践。因此,该项目有助于将该技术开发为一种有用且可靠的船舶板层断裂修复工具,并力求促进其在工业上的接受和实施。该项目的资金由船舶结构委员会通过海军水面作战中心卡德罗克分部提供,随后由 BMT 设计师和规划师提供给密歇根大学。研究了两种配置。首先研究了长度为 18.0 英寸、宽度为 12.0 英寸、厚度为 0.25 英寸的钢板,中跨处有 3.0 英寸的初始裂纹,没有使用钢筋。然后使用双面加固检查了其他几何形状相似的板。在板的一端施加了 2.0 到 50.0 千磅之间的周期性载荷。在进行这些测试之前,进行了简单的拉伸强度测试,以确定复合材料补片的材料特性和 s