有一个基本概念:量子状态由材料系统维持。材料系统属于实验室(真实)空间;量子状态属于(摘要)希尔伯特空间。一个人无法根据其他概念来定义这种基本关系。这一点对于一种适合这种状况的语言的发展至关重要。这种关系定义了与材料系统相关的物理状态。我们通过相应材料系统维持的量子状态定义物理状态。e&e.2-1提醒第1章让我们提醒一些想法。量子状态形成线性歧管,其中定义了统一标量产物;每个向量| g>在其中对应一个,只有一个共轭转置,是一个复杂的数字,代表了两个向量之间的标量产品| f> and | g>; 是一个实数。
随着我们的理论变得越来越先进和抽象,我们需要不同的希尔伯特空间。有时这些空间更简单:例如,有限维希尔伯特空间 H = C 2 中隐藏着许多有趣的物理现象,其中状态只是一个二维复向量。但有时希尔伯特空间要复杂得多,就像量子场论中的空间一样,其中 M 本身是一个无限维函数空间,而 L 2 ( M ) 是一个可怕且难以理解的东西。在这些讲座中,我们不会遇到比 H = L 2 ( R 3 ) 更复杂的空间,它是 R 3 上可归一化函数的空间。
摘要 - 数据科学在生物医学和生理时间序列和空间图的分析中的使用允许提取有关生物体整体和单个器官的动态状态和功能的可靠信息。在本文中,基于记忆函数形式主义,这是统计物理学的方法之一,我们分析了人脑和人类神经肌肉系统的生物电活动的信号。我们从对人类信号中揭示的全球模式的研究进行过渡到对时间动态各个部分的分析。基于局部特征和参数(功率谱和统计记忆度量的时间窗口绘图),我们建立了周期性模式和动态模式相关性的变化。在时间序列分析的情况下,各种定位过程扮演着“统计显微镜”的作用,该过程捕获信号详细信息或反映对象的局部结构的特征。在记忆功能形式主义框架内引入的广义和局部参数被证明可用于寻找心脏病学,神经生理学,流行病学以及研究人类感觉运动和运动活性的诊断标准。
摘要 量子退火是一种计算方法,其中优化和机器学习问题被映射到受量子涨落影响的物理实现的能量景观中,允许利用这些涨落来帮助找到世界上一些最具挑战性的计算问题的解决方案。最近,由于构建了基于通量量子比特的大规模量子退火设备,该领域引起了广泛关注。这些设备已经实现了一种称为反向退火的技术,允许在本地搜索解决方案空间,并且已经测试了基于这些技术的算法。在本文中,我开发了一种量子退火器算法设计的形式化,我称之为“推理原语”形式化。这种形式化自然适合于表达结构上类似于遗传算法的算法,但退火处理器执行组合交叉/变异步骤。我演示了如何使用这些方法来理解已经实现的算法,以及这些控制与当前为提高量子退火器性能而进行的各种其他努力的兼容性。
11 形式主义方法只有在人们被视为完全以自我为中心时才有效”(第 21 页)。然而,这实际上不可能,因为形式模型(作为从明确假设中得出的一系列推论,以逻辑合理的结构相互关联)显然适用于各种现实。交换和生产的形式模型是在没有提到微观经济学的情况下构建的——生态学家和心理学家一直都在这样做。微观经济形式模型的有效性当然是与形式在理论化中的价值无关的问题。因此,施奈德用错了词,他把“微观经济”说成了“形式”。
许多关键信息系统依赖于通过共享网络(例如互联网)进行通信。通过此类网络的数据通常很敏感,需要保密。如果处理不当,私人数据、身份验证码、时间信息或本地化等信息可能会被网络上的任何人访问。这可能导致安全攻击以检索或更改敏感数据 [ Kan+07 ; HZN09 ; Mod+13 ]。为了防止此类入侵,已经开发了各种安全方法和协议。然而,这些安全决策并不总能避免入侵。为了分析信息系统的安全性并突出其弱点,自关键信息系统出现初期就开始使用 FMEA(故障模式影响和危害性分析)[ Xu+02 ; Cas+06 ] 等技术标准。此后,人们开始探索更加结构化、基于模型的方法,例如 ADVISE 方法 [ LeM+11 ],该方法可以自动生成定量指标或形式化方法,例如团队自动机 [ BLP05 ] 和攻击树 [ KPS14 ],
微电子器件的散热是限制其性能和可靠性的关键问题 [1]。固-固界面的巨大热阻往往是散热的主要瓶颈 [2]。因此,了解界面热传输和设计界面以实现超高热导率的需求十分巨大。原子格林函数 (AGF) 一直是研究纳米级热传输的有力工具 [3,4],尤其是跨界面热传输。然而,传统的 AGF [3,5–12] 是在谐波范围内制定的。缺乏非谐性一直是 AGF 在实际温度范围内处理界面热传输的主要限制因素 [13,14]。在 AGF 中加入非谐性在原则上是可能的,但极具挑战性。自 2006 年 Mingo 将非谐性纳入一维原子结以来 [15],很少有人尝试使用不同程度的近似将非谐性纳入三维结构,例如通过拟合实验数据获得非谐性势能或非弹性声子散射率 [16–18]。这些研究表明了非谐性对界面热传输的重要性,并启发了我们在没有任何近似的情况下将非谐性纳入 AGF 的努力。
自Bennett等人以来。拟议的传送在1993年[1],量子状态传输对于开发量子计算和量子通信至关重要[2,3]。标准的传送理论方法基于希尔伯特空间中爱因斯坦 - 波多尔斯基 - 罗森(EPR)对[4]的特性。纠缠和投影假设以及发件人和接收者之间的经典通信通常分别称为爱丽丝和鲍勃,构成了传送协议的基本要素。在1990年代后期,通过使用参数下调(PDC)中产生的纠缠光子(PDC)进行的Innsbruck [5]和Rome [6]的实验中实现了传送。关于谁首先执行真正的量子传送存在存在差异[7]。一方面,因斯布鲁克实验使用了两对纠缠的光子,四个光子之一被用作触发器来生成要传送的单粒子状态[5,8]。四光子来源的一个显着特征是纠缠交换的第一个实验[9,10]。然而,鉴于仅在一个自由度和线性光学元件中使用纠缠的两个光子的四个极化钟状态[11],请参考文献中描述的传送方案。1在Innsbruck计划中无法获得100%的成功。此外,该实验的一个有争议的方面是传送的后选择性或非稳定性[12-14]。1。参考。15进行了。另一方面,在罗马传送实验中,使用了一对下调的光子,并且要传送的状态在一个光子的两个自由度之一中编码[15],这与参考文献中的工作有所不同。相比之下,贝尔状态测量(BSM)取得了100%的成功。16,参考文献中给出的理论建议的不同实施。Wigner形式主义构成了希尔伯特空间中东正教配方的补充方法,用于研究用PDC实施的量子光学实验[17-25]。
最近,量子基础领域对 Page-Wootters (PW) 形式主义的兴趣激增,并且基于内部量子参考系 (IQRF) 的相关概念开发了一项新研究计划。这项研究得出了许多令人兴奋的结果,为时间本质、参考系和等效原理等问题的深层问题提供了新的见解。这些问题使 PW 和 IQRF 研究计划正好处于量子力学基础和正在进行的量子引力理论探索的交汇处,因此,了解这些计划的结果对我们理解这些领域究竟意味着什么,是非常有意义的。在本文中,我们旨在阐明 PW 和 IQRF 计划的一些主要主题的基础性影响,尽管我们当然无法涵盖这些领域研究人员所取得的所有成就。这些研究计划的一个特点引发了许多问题,那就是 PW 形式主义和更普遍意义上的 IQRF 研究计划显然没有为波函数坍缩机制或任何其他可确保测量具有唯一结果的方法留出空间。因此,人们可能会认为,为了认真对待这些研究计划,我们必须采用埃弗雷特解释、新哥本哈根解释或其他不坚持唯一测量结果的解释。因此,为了理解这项研究的基础意义,重要的是确定 PW 和 IQRF 形式主义是否隐含地依赖于量子力学的某种解释,以及是否有可能在单一世界现实主义解释的背景下理解它们的结果。围绕 PW 和 IQRF 形式主义的操作凭证也存在重要问题。这两种方法的支持者通常都以操作性的角度来推动他们的研究——例如,参考文献 [1] 认为“将操作性的观点扩展到量子理论,人们会通过测量充当时钟的量子系统来定义时间。”这种对时间的操作性方法听起来非常合理(事实上,它继承自爱因斯坦在狭义和广义相对论中对时间的方法),但重要的是要记住,这些框架通常不会明确地模拟观察者,因此在形式结果和实际观察者执行的操作之间仍然存在需要弥合的差距。弥合这一差距可能需要我们采取一些关于观察者角色的立场,以及 PW 和 IQRF 形式化归因于测量结果的概率的性质。因此,在简要介绍 PW 和 IQRF 研究计划后,我们将把我们的探究分为四个问题,事实上,所有这些都是相互关联的:
两种密切相关的危机的严重性,环境和经济危机的严重性也需要以理论上的方式面对;因此,作者提出了一个模型,该模型仅构建了一个生态和经济耦合变量的动力学系统,即乔治库·罗根(Georgescu-Rogen)和赫尔曼·戴利(Herman Daly)的“稳态经济学”的想法。这可能诉诸于广义的伏特拉模型,在汉密尔顿形式主义及其汉密尔顿方程式中翻译,可以使每个变量都可以“结合”每个变量,一种经济,另一种是一种生态学,描述了独特的动力学系统时期的行为。将模型应用于最相关的两个变量最相关的生态经济对,导致模型的“相空间”中的暗示性几何形状:轨迹是包裹“甜甜圈”的曲线,它们的集合是我们正在寻找的“固定状态”。这些轨迹是“准周期性动作”,其特征是两个频率,其值在“小振荡”近似中提供了良好的估计值。在本文中,汉密尔顿方程的解决方案的稳定性来定义一个更一般但更抽象的“固定状态”。使用变量的世界数据时,可以确保模型的全局特征。该模型的一个非常有趣的特征是,使用类似于牛顿动力学的术语给出了可持续性场景的途径。关键字:独特的动力系统,Volterra广义模型,“共轭”哈密顿对,准周期性动作,Lyapunov稳定性,全球固定状态。